cGAN Model-Based Radio Frequency Interference Mitigation for Radio Astronomy Data

I. Helmy, Wooyeol Choi
{"title":"cGAN Model-Based Radio Frequency Interference Mitigation for Radio Astronomy Data","authors":"I. Helmy, Wooyeol Choi","doi":"10.1109/ICAIIC57133.2023.10066995","DOIUrl":null,"url":null,"abstract":"Radio astronomy is one of the essential branches of space sciences where astronomers explore the universe by collecting data using various tools. The radio telescope is one of the principal tools for receiving celestial objects' emissions. How-ever, radio frequency interference (RFI) detection, mitigation, and avoidance are some of the main challenges in astronomical radio data. Additionally, they are essential steps for selecting the best site to initiate the radio telescope. RFI mitigation is arduous because interference can take a wide range of forms and affects different scientific goals. The substantial challenges of handling large radio data volumes make it a good application of deep learning (DL). The research aims to mitigate the interference using a DL-based approach, specifically, conditional generative adversarial network (cGAN), because of its powerful ability to differentiate the interference and the clean data.","PeriodicalId":105769,"journal":{"name":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC57133.2023.10066995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Radio astronomy is one of the essential branches of space sciences where astronomers explore the universe by collecting data using various tools. The radio telescope is one of the principal tools for receiving celestial objects' emissions. How-ever, radio frequency interference (RFI) detection, mitigation, and avoidance are some of the main challenges in astronomical radio data. Additionally, they are essential steps for selecting the best site to initiate the radio telescope. RFI mitigation is arduous because interference can take a wide range of forms and affects different scientific goals. The substantial challenges of handling large radio data volumes make it a good application of deep learning (DL). The research aims to mitigate the interference using a DL-based approach, specifically, conditional generative adversarial network (cGAN), because of its powerful ability to differentiate the interference and the clean data.
基于cGAN模型的射电天文数据射频干扰抑制
射电天文学是空间科学的重要分支之一,天文学家通过使用各种工具收集数据来探索宇宙。射电望远镜是接收天体辐射的主要工具之一。然而,射频干扰(RFI)的探测、缓解和避免是天文射电数据中的一些主要挑战。此外,它们是选择启动射电望远镜的最佳地点的必要步骤。减少射频干扰是一项艰巨的任务,因为干扰可以采取多种形式,影响不同的科学目标。处理大量无线电数据的巨大挑战使其成为深度学习(DL)的一个很好的应用。该研究旨在使用基于dl的方法减轻干扰,特别是条件生成对抗网络(cGAN),因为它具有区分干扰和干净数据的强大能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信