From Reflecting Brownian Motion to Reflected Stochastic Differential Equations: A Systematic Survey and Complementary Study

Yunwen Wang, Jinfeng Li
{"title":"From Reflecting Brownian Motion to Reflected Stochastic Differential Equations: A Systematic Survey and Complementary Study","authors":"Yunwen Wang, Jinfeng Li","doi":"10.2139/ssrn.3688563","DOIUrl":null,"url":null,"abstract":"This work contributes a systematic survey and complementary insights of reflecting Brownian motion and its properties. Extension of the Skorohod problem's solution to more general cases is investigated, based on which a discussion is further conducted on the existence of solutions for a few particular kinds of stochastic differential equations with a reflected boundary. It is proved that the multidimensional version of the Skorohod equation can be solved under the assumption of a convex domain (D).","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3688563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work contributes a systematic survey and complementary insights of reflecting Brownian motion and its properties. Extension of the Skorohod problem's solution to more general cases is investigated, based on which a discussion is further conducted on the existence of solutions for a few particular kinds of stochastic differential equations with a reflected boundary. It is proved that the multidimensional version of the Skorohod equation can be solved under the assumption of a convex domain (D).
从反射布朗运动到反射随机微分方程:系统综述与补充研究
这项工作为反映布朗运动及其性质提供了系统的调查和补充的见解。将Skorohod问题的解推广到更一般的情况,在此基础上进一步讨论了几类特殊的带反射边界的随机微分方程解的存在性。在凸域(D)的假设下,证明了Skorohod方程的多维解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信