Generalizations of Multiplicative Ideal Theory to Commutative Rings with Zerodivisors

Ryuki Matsuda
{"title":"Generalizations of Multiplicative Ideal Theory to Commutative Rings with Zerodivisors","authors":"Ryuki Matsuda","doi":"10.5036/BFSIU1968.17.49","DOIUrl":null,"url":null,"abstract":"Multiplicative ideal theory has at first been developed for (commutative) integral domains. We concern here generalizations of the theory to (commutative) rings with zerodivisors. At first, Manis [50] defined a valuation for a commutative ring with zerodivisors, and generalized basic properties of a valuation on a domain(1). Using the results of Manis, Griffin [35] extended the notion of prufer domain for commutative rings with zerodivisors, and extended conditions under which a ring is a prufer ring. And Larsen generalized the notion and properties of almost Dedekind domain for rings with zerodivisors [46], generalized primary ideal structure of a prufer domain for a ring with zerodivisors. Also he extended the notion of finite character and characterizations of a prufer domain with finite character for a ring with zerodivisors [47]. Next Hinkle-Huckaba [38] defined a Kronecker function ring for a ring with zerodivisors and generalized a property of a Kronecker function domain(2). Besides, Kennedy [43] extended the notion of Krull domain for a ring with zerodivisors and generalized some properties of a Krull domain for a ring with zerodivisors(3). Here we generalize all of multiplicative ideal theory for a ring with zerodivisors. The subjects remaining for generalizations are as follows: 1. We know by Griffin [32] the extension of conditions of a prufer domain to a prufer *-multiplication domain, and a relationship between a prufer v-multiplication domain and a domain of Krull type.","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.17.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Multiplicative ideal theory has at first been developed for (commutative) integral domains. We concern here generalizations of the theory to (commutative) rings with zerodivisors. At first, Manis [50] defined a valuation for a commutative ring with zerodivisors, and generalized basic properties of a valuation on a domain(1). Using the results of Manis, Griffin [35] extended the notion of prufer domain for commutative rings with zerodivisors, and extended conditions under which a ring is a prufer ring. And Larsen generalized the notion and properties of almost Dedekind domain for rings with zerodivisors [46], generalized primary ideal structure of a prufer domain for a ring with zerodivisors. Also he extended the notion of finite character and characterizations of a prufer domain with finite character for a ring with zerodivisors [47]. Next Hinkle-Huckaba [38] defined a Kronecker function ring for a ring with zerodivisors and generalized a property of a Kronecker function domain(2). Besides, Kennedy [43] extended the notion of Krull domain for a ring with zerodivisors and generalized some properties of a Krull domain for a ring with zerodivisors(3). Here we generalize all of multiplicative ideal theory for a ring with zerodivisors. The subjects remaining for generalizations are as follows: 1. We know by Griffin [32] the extension of conditions of a prufer domain to a prufer *-multiplication domain, and a relationship between a prufer v-multiplication domain and a domain of Krull type.
零因子交换环上乘法理想理论的推广
乘法理想理论最初是针对(可交换)积分域发展起来的。这里我们关注的是将该理论推广到具有零因子的(交换)环。首先,Manis[50]定义了具有零因子的可交换环的赋值,并在定域(1)上推广了赋值的基本性质。Griffin[35]利用Manis的结果,推广了具有零因子的交换环的prufer域的概念,并推广了环是prufer环的条件。Larsen推广了零因子环的几乎Dedekind定义域的概念和性质[46],推广了零因子环的prufer定义域的初等理想结构。此外,他还推广了有限字符的概念,并对具有零因子的环给出了有限字符的整数域的刻画[47]。接着,Hinkle-Huckaba[38]对零因子环定义了Kronecker函数环,并推广了Kronecker函数域的一个性质(2)。此外,Kennedy[43]推广了零因子环的Krull定义域的概念,并推广了零因子环的Krull定义域的一些性质(3)。本文推广了零因子环的所有乘法理想理论。剩下可以概括的主题有:1。我们知道Griffin[32]将prufer域的条件扩展到prufer *-乘法域,以及prufer v-乘法域与Krull型域之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信