{"title":"Passive sonar processing using neural networks","authors":"P. Vanhoutte, K. Deegan, K. Khorasani","doi":"10.1109/IJCNN.1991.170552","DOIUrl":null,"url":null,"abstract":"The utilization of a two-stage neural network architecture for the detection of targets in a passive, listen-only sonar is discussed. The two-stage network consists of a first-stage Hopfield network to suppress noise, and a second stage using a bidirectional associative memory (BAM) to make the decision as to whether a target has been detected or not. A second architecture using only a single BAM stage is also presented for illustrative purposes. The target is assumed to be emitting a single tone sinusoid as its signature. The system also assumes only white Gaussian noise perturbation to the signal. It is shown that this network structure provides correct detection at a signal-to-noise ratio of -21 dB, a 6 dB improvement in target detection over a similar network using a perceptron in the second stage. Performance is shown to be limited to the size of the Hopfield network, in the first stage, and to the training set applied to it.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The utilization of a two-stage neural network architecture for the detection of targets in a passive, listen-only sonar is discussed. The two-stage network consists of a first-stage Hopfield network to suppress noise, and a second stage using a bidirectional associative memory (BAM) to make the decision as to whether a target has been detected or not. A second architecture using only a single BAM stage is also presented for illustrative purposes. The target is assumed to be emitting a single tone sinusoid as its signature. The system also assumes only white Gaussian noise perturbation to the signal. It is shown that this network structure provides correct detection at a signal-to-noise ratio of -21 dB, a 6 dB improvement in target detection over a similar network using a perceptron in the second stage. Performance is shown to be limited to the size of the Hopfield network, in the first stage, and to the training set applied to it.<>