Estimating Uncertainties of Recurrent Neural Networks in Application to Multitarget Tracking

Daniel Pollithy, Marcel Reith-Braun, F. Pfaff, U. Hanebeck
{"title":"Estimating Uncertainties of Recurrent Neural Networks in Application to Multitarget Tracking","authors":"Daniel Pollithy, Marcel Reith-Braun, F. Pfaff, U. Hanebeck","doi":"10.1109/MFI49285.2020.9235216","DOIUrl":null,"url":null,"abstract":"In multitarget tracking, finding an association between the new measurements and the known targets is a crucial challenge. By considering both the uncertainties of all the predictions and measurements, the most likely association can be determined. While Kalman filters inherently provide the predicted uncertainties, they require a predefined model. In contrast, neural networks offer data-driven possibilities, but provide only deterministic predictions. We therefore compare two common approaches for uncertainty estimation in neural networks applied to LSTMs using our multitarget tracking benchmark for optical belt sorting. As a result, we show that the estimation of measurement uncertainties improves the tracking results of LSTMs, posing them as a viable alternative to manual motion modeling.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In multitarget tracking, finding an association between the new measurements and the known targets is a crucial challenge. By considering both the uncertainties of all the predictions and measurements, the most likely association can be determined. While Kalman filters inherently provide the predicted uncertainties, they require a predefined model. In contrast, neural networks offer data-driven possibilities, but provide only deterministic predictions. We therefore compare two common approaches for uncertainty estimation in neural networks applied to LSTMs using our multitarget tracking benchmark for optical belt sorting. As a result, we show that the estimation of measurement uncertainties improves the tracking results of LSTMs, posing them as a viable alternative to manual motion modeling.
递归神经网络在多目标跟踪中的不确定性估计
在多目标跟踪中,寻找新测量值与已知目标之间的关联是一个关键的挑战。通过考虑所有预测和测量的不确定性,可以确定最可能的关联。虽然卡尔曼滤波固有地提供预测的不确定性,但它们需要一个预定义的模型。相比之下,神经网络提供数据驱动的可能性,但只提供确定性预测。因此,我们使用光学带分类的多目标跟踪基准比较了应用于lstm的神经网络中两种常见的不确定性估计方法。结果表明,测量不确定性的估计改善了lstm的跟踪结果,使其成为手动运动建模的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信