Learning Collaborative Multi-Target Search for A Visual Drone Swarm

Jiaping Xiao, Yi Xuan Marcus Tan, Xin-qiu Zhou, M. Feroskhan
{"title":"Learning Collaborative Multi-Target Search for A Visual Drone Swarm","authors":"Jiaping Xiao, Yi Xuan Marcus Tan, Xin-qiu Zhou, M. Feroskhan","doi":"10.1109/CAI54212.2023.00012","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-agent reinforcement learning approach, POCA-Mix, to achieve collaborative multi-target search with a visual drone swarm. The proposed approach leverages the benefits of curriculum learning and mixed credit assignment to guide the drone swarm in per-forming the search task with only local visual perception in a constrained 3D environment. To validate the performance of the proposed approach, we conducted simulation experiments with various combinations regarding the number of drones and targets. The results demonstrate that the proposed approach outperforms other baseline methods such as PPO and MA-POCA with a higher success rate in different scenarios.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a multi-agent reinforcement learning approach, POCA-Mix, to achieve collaborative multi-target search with a visual drone swarm. The proposed approach leverages the benefits of curriculum learning and mixed credit assignment to guide the drone swarm in per-forming the search task with only local visual perception in a constrained 3D environment. To validate the performance of the proposed approach, we conducted simulation experiments with various combinations regarding the number of drones and targets. The results demonstrate that the proposed approach outperforms other baseline methods such as PPO and MA-POCA with a higher success rate in different scenarios.
视觉无人机群的学习协同多目标搜索
在本文中,我们提出了一种多智能体强化学习方法POCA-Mix,以实现视觉无人机群的协同多目标搜索。该方法利用课程学习和混合学分分配的优势,指导无人机群在受限的3D环境中仅使用局部视觉感知执行搜索任务。为了验证所提出方法的性能,我们针对无人机和目标的数量进行了各种组合的仿真实验。结果表明,该方法在不同场景下的成功率均高于PPO和MA-POCA等基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信