Parallel and Distributed Training of Deep Neural Networks: A brief overview

Attila Farkas, Gábor Kertész, R. Lovas
{"title":"Parallel and Distributed Training of Deep Neural Networks: A brief overview","authors":"Attila Farkas, Gábor Kertész, R. Lovas","doi":"10.1109/INES49302.2020.9147123","DOIUrl":null,"url":null,"abstract":"Deep neural networks and deep learning are becoming important and popular techniques in modern services and applications. The training of these networks is computationally intensive, because of the extreme number of trainable parameters and the large amount of training samples. In this brief overview, current solutions aiming to speed up this training process via parallel and distributed computation are introduced. The necessary components and strategies are described from the low-level communication protocols to the high-level frameworks for the distributed deep learning. The current implementations of the deep learning frameworks with distributed computational capabilities are compared and key parameters are identified to help design effective solutions.","PeriodicalId":175830,"journal":{"name":"2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES49302.2020.9147123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Deep neural networks and deep learning are becoming important and popular techniques in modern services and applications. The training of these networks is computationally intensive, because of the extreme number of trainable parameters and the large amount of training samples. In this brief overview, current solutions aiming to speed up this training process via parallel and distributed computation are introduced. The necessary components and strategies are described from the low-level communication protocols to the high-level frameworks for the distributed deep learning. The current implementations of the deep learning frameworks with distributed computational capabilities are compared and key parameters are identified to help design effective solutions.
深度神经网络的并行和分布式训练:简要概述
深度神经网络和深度学习正在成为现代服务和应用中重要而流行的技术。由于可训练参数的极端数量和大量的训练样本,这些网络的训练是计算密集型的。在这个简短的概述中,目前的解决方案旨在通过并行和分布式计算来加速这个训练过程。从底层通信协议到高层框架,描述了分布式深度学习所需的组件和策略。比较了目前具有分布式计算能力的深度学习框架的实现,并确定了关键参数,以帮助设计有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信