Orientation Invariant Tensor Completion In Both Spectual And Space Domains

Xiangrui Li, Andong Wang, Xiyuan Hu, Zhenmin Tang
{"title":"Orientation Invariant Tensor Completion In Both Spectual And Space Domains","authors":"Xiangrui Li, Andong Wang, Xiyuan Hu, Zhenmin Tang","doi":"10.1109/WI-IAT55865.2022.00135","DOIUrl":null,"url":null,"abstract":"The performance of most tensor completion algorithms heavily relies on the definition of tensor low-rankness. Among the various low-rank regularizations proposed in the last decade, the Tubal+Tucker Nuclear Norm (T2NN) firstly considers the low rankness both in spectral and space domains. However, this norm is unfortunately sensitive to the orientation, and thus fails to model low-rankness in multiple orientations. To this point, a new tensor norm, dubbed Orientation Invariant Hybrid Nuclear Norm (OIHNN), is first defined and then applied to formulate a new tensor completion model. To solve the model, an efficient algorithm is developed within the framework of Alternating Direction Method of Multipliers (ADMM). Effectiveness of our method is validated through experimental results on real datasets.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of most tensor completion algorithms heavily relies on the definition of tensor low-rankness. Among the various low-rank regularizations proposed in the last decade, the Tubal+Tucker Nuclear Norm (T2NN) firstly considers the low rankness both in spectral and space domains. However, this norm is unfortunately sensitive to the orientation, and thus fails to model low-rankness in multiple orientations. To this point, a new tensor norm, dubbed Orientation Invariant Hybrid Nuclear Norm (OIHNN), is first defined and then applied to formulate a new tensor completion model. To solve the model, an efficient algorithm is developed within the framework of Alternating Direction Method of Multipliers (ADMM). Effectiveness of our method is validated through experimental results on real datasets.
在象域和空间域的方向不变张量补全
大多数张量补全算法的性能在很大程度上依赖于张量低秩的定义。在近十年来提出的各种低秩正则化中,Tubal+Tucker核范数(T2NN)首先考虑了谱域和空间域的低秩。然而,不幸的是,该规范对方向很敏感,因此无法对多方向的低秩进行建模。为此,首先定义了一个新的张量范数,称为方向不变混合核范数(OIHNN),然后将其应用于新的张量补全模型。为了求解该模型,在乘法器交替方向法(ADMM)框架内提出了一种有效的算法。在实际数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信