Attentive and Adversarial Learning for Video Summarization

Tsu-Jui Fu, Shao-Heng Tai, Hwann-Tzong Chen
{"title":"Attentive and Adversarial Learning for Video Summarization","authors":"Tsu-Jui Fu, Shao-Heng Tai, Hwann-Tzong Chen","doi":"10.1109/WACV.2019.00173","DOIUrl":null,"url":null,"abstract":"This paper aims to address the video summarization problem via attention-aware and adversarial training. We formulate the problem as a sequence-to-sequence task, where the input sequence is an original video and the output sequence is its summarization. We propose a GAN-based training framework, which combines the merits of unsupervised and supervised video summarization approaches. The generator is an attention-aware Ptr-Net that generates the cutting points of summarization fragments. The discriminator is a 3D CNN classifier to judge whether a fragment is from a ground-truth or a generated summarization. The experiments show that our method achieves state-of-the-art results on SumMe, TVSum, YouTube, and LoL datasets with 1.5% to 5.6% improvements. Our Ptr-Net generator can overcome the unbalanced training-test length in the seq2seq problem, and our discriminator is effective in leveraging unpaired summarizations to achieve better performance.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper aims to address the video summarization problem via attention-aware and adversarial training. We formulate the problem as a sequence-to-sequence task, where the input sequence is an original video and the output sequence is its summarization. We propose a GAN-based training framework, which combines the merits of unsupervised and supervised video summarization approaches. The generator is an attention-aware Ptr-Net that generates the cutting points of summarization fragments. The discriminator is a 3D CNN classifier to judge whether a fragment is from a ground-truth or a generated summarization. The experiments show that our method achieves state-of-the-art results on SumMe, TVSum, YouTube, and LoL datasets with 1.5% to 5.6% improvements. Our Ptr-Net generator can overcome the unbalanced training-test length in the seq2seq problem, and our discriminator is effective in leveraging unpaired summarizations to achieve better performance.
视频摘要的注意和对抗性学习
本文旨在通过注意感知和对抗训练来解决视频摘要问题。我们将问题表述为序列到序列的任务,其中输入序列是原始视频,输出序列是其摘要。我们提出了一个基于gan的训练框架,它结合了无监督和有监督视频摘要方法的优点。该生成器是一个注意感知的Ptr-Net,用于生成摘要片段的切点。鉴别器是一个3D CNN分类器,用来判断一个片段是来自ground truth还是一个生成的摘要。实验表明,我们的方法在SumMe、TVSum、YouTube和LoL数据集上取得了最先进的结果,提高了1.5%到5.6%。我们的Ptr-Net生成器可以克服seq2seq问题中训练-测试长度不平衡的问题,我们的鉴别器可以有效地利用非配对摘要来获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信