Multi-sphere Support Vector Data Description for Outliers Detection on Multi-distribution Data

Yanshan Xiao, Bo Liu, Longbing Cao, Xindong Wu, Chengqi Zhang, Z. Hao, Fengzhao Yang, Jie Cao
{"title":"Multi-sphere Support Vector Data Description for Outliers Detection on Multi-distribution Data","authors":"Yanshan Xiao, Bo Liu, Longbing Cao, Xindong Wu, Chengqi Zhang, Z. Hao, Fengzhao Yang, Jie Cao","doi":"10.1109/ICDMW.2009.87","DOIUrl":null,"url":null,"abstract":"SVDD has been proved a powerful tool for outlier detection. However, in detecting outliers on multi-distribution data, namely there are distinctive distributions in the data, it is very challenging for SVDD to generate a hyper-sphere for distinguishing outliers from normal data. Even if such a hyper-sphere can be identified, its performance is usually not good enough. This paper proposes an multi-sphere SVDD approach, named MS-SVDD, for outlier detection on multi-distribution data. First, an adaptive sphere detection method is proposed to detect data distributions in the dataset. The data is partitioned in terms of the identified data distributions, and the corresponding SVDD classifiers are constructed separately. Substantial experiments on both artificial and real-world datasets have demonstrated that the proposed approach outperforms original SVDD.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

SVDD has been proved a powerful tool for outlier detection. However, in detecting outliers on multi-distribution data, namely there are distinctive distributions in the data, it is very challenging for SVDD to generate a hyper-sphere for distinguishing outliers from normal data. Even if such a hyper-sphere can be identified, its performance is usually not good enough. This paper proposes an multi-sphere SVDD approach, named MS-SVDD, for outlier detection on multi-distribution data. First, an adaptive sphere detection method is proposed to detect data distributions in the dataset. The data is partitioned in terms of the identified data distributions, and the corresponding SVDD classifiers are constructed separately. Substantial experiments on both artificial and real-world datasets have demonstrated that the proposed approach outperforms original SVDD.
多分布数据异常点检测的多球面支持向量数据描述
SVDD已被证明是一种强大的异常值检测工具。然而,在多分布数据(即数据中存在不同的分布)的异常点检测中,SVDD生成一个用于区分异常点和正常数据的超球是非常具有挑战性的。即使可以识别出这样一个超球体,它的性能通常也不够好。针对多分布数据的异常值检测问题,提出了一种多球面奇异值分析方法MS-SVDD。首先,提出了一种自适应球体检测方法来检测数据集中的数据分布。根据识别的数据分布对数据进行分区,并分别构造相应的SVDD分类器。在人工和现实世界数据集上的大量实验表明,所提出的方法优于原始的SVDD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信