S. Bano, E. Carlini, P. Cassará, M. Coppola, Patrizio Dazzi, A. Gotta
{"title":"A Novel Approach to Distributed Model Aggregation using Apache Kafka","authors":"S. Bano, E. Carlini, P. Cassará, M. Coppola, Patrizio Dazzi, A. Gotta","doi":"10.1145/3526059.3533621","DOIUrl":null,"url":null,"abstract":"Multi-Access Edge Computing (MEC) is attracting a lot of interest because it complements cloud-based approaches. Indeed, MEC is opening up in the direction of reducing both interaction delays and data sharing, called Cyber-Physical Systems (CPSs). In the near fu- ture, edge technologies will be a fundamental tool to better support time-dependent and data-intensive applications. In this context, this work explores existing and emerging platforms for MEC and human-centric applications, and proposes a suitable architecture that can be used in the context of autonomous vehicle systems.The proposed architecture will support scalable communication among sensing devices and edge/cloud computing platforms, as well as orchestrate services for computing, storage, and learning with the use of an Information-centric paradigm such as Apache Kafka","PeriodicalId":351705,"journal":{"name":"Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526059.3533621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Multi-Access Edge Computing (MEC) is attracting a lot of interest because it complements cloud-based approaches. Indeed, MEC is opening up in the direction of reducing both interaction delays and data sharing, called Cyber-Physical Systems (CPSs). In the near fu- ture, edge technologies will be a fundamental tool to better support time-dependent and data-intensive applications. In this context, this work explores existing and emerging platforms for MEC and human-centric applications, and proposes a suitable architecture that can be used in the context of autonomous vehicle systems.The proposed architecture will support scalable communication among sensing devices and edge/cloud computing platforms, as well as orchestrate services for computing, storage, and learning with the use of an Information-centric paradigm such as Apache Kafka