Distributional vs. Quantile Regression

R. Koenker, S. Leorato, Franco Peracchi
{"title":"Distributional vs. Quantile Regression","authors":"R. Koenker, S. Leorato, Franco Peracchi","doi":"10.2139/ssrn.2368737","DOIUrl":null,"url":null,"abstract":"Given a scalar random variable Y and a random vector X defined on the same probability space, the conditional distribution of Y given X can be represented by either the conditional distribution function or the conditional quantile function. To these equivalent representations correspond two alternative approaches to estimation. One approach, distributional regression (DR), is based on direct estimation of the conditional distribution function; the other approach, quantile regression (QR), is instead based on direct estimation of the conditional quantile function. Indirect estimates of the conditional quantile function and the conditional distribution function may then be obtained by inverting the direct estimates obtained from either approach. Despite the growing attention to the DR approach, and the vast literature on the QR approach, the link between the two approaches has not been explored in detail. The aim of this paper is to fill-in this gap by providing a better understanding of the relative performance of the two approaches, both asymptotically and in finite samples, under the linear location model and certain types of heteroskedastic location-scale models.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2368737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Given a scalar random variable Y and a random vector X defined on the same probability space, the conditional distribution of Y given X can be represented by either the conditional distribution function or the conditional quantile function. To these equivalent representations correspond two alternative approaches to estimation. One approach, distributional regression (DR), is based on direct estimation of the conditional distribution function; the other approach, quantile regression (QR), is instead based on direct estimation of the conditional quantile function. Indirect estimates of the conditional quantile function and the conditional distribution function may then be obtained by inverting the direct estimates obtained from either approach. Despite the growing attention to the DR approach, and the vast literature on the QR approach, the link between the two approaches has not been explored in detail. The aim of this paper is to fill-in this gap by providing a better understanding of the relative performance of the two approaches, both asymptotically and in finite samples, under the linear location model and certain types of heteroskedastic location-scale models.
分布回归与分位数回归
给定定义在同一概率空间上的标量随机变量Y和随机向量X,则给定X的Y的条件分布可以用条件分布函数或条件分位数函数表示。对于这些等价的表示,对应着两种可供选择的估计方法。一种方法,分布回归(DR),是基于条件分布函数的直接估计;另一种方法,分位数回归(QR),是基于条件分位数函数的直接估计。条件分位数函数和条件分布函数的间接估计可以通过将两种方法得到的直接估计反过来得到。尽管DR方法受到越来越多的关注,QR方法也有大量的文献,但这两种方法之间的联系尚未得到详细的探讨。本文的目的是通过更好地理解这两种方法在线性位置模型和某些类型的异方差位置尺度模型下的渐近和有限样本中的相对性能来填补这一空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信