Spectral-spatial classification for hyperspectral image by bilateral filtering and morphological features

Wenzi Liao, Daniel Erick Ochoa Donoso, F. V. Coillie, Jie Li, C. Qi, S. Gautama, W. Philips
{"title":"Spectral-spatial classification for hyperspectral image by bilateral filtering and morphological features","authors":"Wenzi Liao, Daniel Erick Ochoa Donoso, F. V. Coillie, Jie Li, C. Qi, S. Gautama, W. Philips","doi":"10.1109/WHISPERS.2016.8071680","DOIUrl":null,"url":null,"abstract":"Hyperspectral (HS) imagery contains a wealth of spectral and spatial information that can improve target detection and recognition performance. Conventional spectral-spatial classification methods cannot fully exploit both spectral and spatial information of HS image. In this paper, we propose a new method to fuse the spectral and spatial information for HS image classification. Our approach transfers the spatial structures of the whole morphological profile into the original HS image by using bilateral filtering, and obtains an enhanced HS image enriching both spectral and spatial information. Meanwhile, the enhanced HS image has the same spectral and spatial dimensions as the original HS image, which may provide a new input to improve the performances of existing HS image classification methods. Experimental results on real HS images are very encouraging. Compared to the methods using only single feature and stacking all the features together, the proposed fusion method improves the overall classification accuracy more than 10% and 5%, respectively.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hyperspectral (HS) imagery contains a wealth of spectral and spatial information that can improve target detection and recognition performance. Conventional spectral-spatial classification methods cannot fully exploit both spectral and spatial information of HS image. In this paper, we propose a new method to fuse the spectral and spatial information for HS image classification. Our approach transfers the spatial structures of the whole morphological profile into the original HS image by using bilateral filtering, and obtains an enhanced HS image enriching both spectral and spatial information. Meanwhile, the enhanced HS image has the same spectral and spatial dimensions as the original HS image, which may provide a new input to improve the performances of existing HS image classification methods. Experimental results on real HS images are very encouraging. Compared to the methods using only single feature and stacking all the features together, the proposed fusion method improves the overall classification accuracy more than 10% and 5%, respectively.
基于双侧滤波和形态学特征的高光谱图像的光谱空间分类
高光谱(HS)图像包含丰富的光谱和空间信息,可以提高目标检测和识别性能。传统的光谱空间分类方法不能充分利用高分辨率图像的光谱和空间信息。本文提出了一种融合光谱和空间信息的HS图像分类新方法。该方法通过双边滤波将整个形态轮廓的空间结构转移到原始HS图像中,得到丰富光谱和空间信息的增强HS图像。同时,增强后的HS图像具有与原始HS图像相同的光谱和空间维度,为改进现有HS图像分类方法的性能提供了新的输入。在真实HS图像上的实验结果令人鼓舞。与仅使用单个特征和将所有特征叠加在一起的方法相比,所提出的融合方法的总体分类准确率分别提高了10%和5%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信