A Comparative Performance of Genetic Algorithm and Bayesian Optimization for Hyperparameter Tuning for Mammogram Classification

Noorma Razali, I. Isa, S. N. Sulaiman, N. Karim, Muhammad Khusairi Osman, Z. H. C. Soh, Z. Yusoff
{"title":"A Comparative Performance of Genetic Algorithm and Bayesian Optimization for Hyperparameter Tuning for Mammogram Classification","authors":"Noorma Razali, I. Isa, S. N. Sulaiman, N. Karim, Muhammad Khusairi Osman, Z. H. C. Soh, Z. Yusoff","doi":"10.1109/ICCSCE58721.2023.10237178","DOIUrl":null,"url":null,"abstract":"An accurate breast cancer classification utilizing Convolutional Neural Network (CNN) requires the best option of hyperparameter selection to create a robust and adaptive algorithm based on different datasets. Standard optimization algorithms are subjected to nondeterministic and restricted to integer-valued parameters that cause a restricted optimization process on a highly non-linear dataset such as mammogram images. In this study, hyperparameter tuning through two optimization methods, Genetic Algorithm optimization (GAO) and Bayesian optimization (BO), are compared based on the evaluation for breast mass classification of benign and malignant on a publicly available mammogram image of the INbreast dataset. The best model shows an increase in testing accuracy at 90.05% and balancing of sensitivity to the specificity of 0.803 to 0.9481, improving its true positive rate when optimized using the GAO method. The optimization process allows for the combination of genetic mutations of the parent and fusion improves the creation of a population for the best-trained network.","PeriodicalId":287947,"journal":{"name":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE58721.2023.10237178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate breast cancer classification utilizing Convolutional Neural Network (CNN) requires the best option of hyperparameter selection to create a robust and adaptive algorithm based on different datasets. Standard optimization algorithms are subjected to nondeterministic and restricted to integer-valued parameters that cause a restricted optimization process on a highly non-linear dataset such as mammogram images. In this study, hyperparameter tuning through two optimization methods, Genetic Algorithm optimization (GAO) and Bayesian optimization (BO), are compared based on the evaluation for breast mass classification of benign and malignant on a publicly available mammogram image of the INbreast dataset. The best model shows an increase in testing accuracy at 90.05% and balancing of sensitivity to the specificity of 0.803 to 0.9481, improving its true positive rate when optimized using the GAO method. The optimization process allows for the combination of genetic mutations of the parent and fusion improves the creation of a population for the best-trained network.
遗传算法与贝叶斯优化在乳腺x线照片分类超参数调优中的比较性能
利用卷积神经网络(CNN)进行准确的乳腺癌分类需要超参数选择的最佳选择,以创建基于不同数据集的鲁棒性和自适应算法。标准优化算法受到不确定性和整数参数的限制,这导致在高度非线性数据集(如乳房x线照片)上的优化过程受到限制。在这项研究中,通过遗传算法优化(GAO)和贝叶斯优化(BO)两种优化方法进行超参数调优,比较基于INbreast数据集公开的乳房x光片图像对乳腺肿块良恶性分类的评估。最佳模型的检测准确率提高了90.05%,灵敏度与特异度的平衡为0.803 ~ 0.9481,采用GAO方法优化后,模型的真阳性率有所提高。所述优化过程允许亲本的基因突变的组合,并且融合改进了为训练最好的网络创建的种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信