Spiking Reservoir Computing for Temporal Edge Intelligence on Loihi

Ramashish Gaurav, T. Stewart, Y. Yi
{"title":"Spiking Reservoir Computing for Temporal Edge Intelligence on Loihi","authors":"Ramashish Gaurav, T. Stewart, Y. Yi","doi":"10.1109/SEC54971.2022.00081","DOIUrl":null,"url":null,"abstract":"Low latency and low energy consumption are the indispensable characteristics of Edge Computing applications. With the fusion of Edge Computing and Artificial Intelligence (AI) into Edge Intelligence, this need is more than ever. Of late, Spiking Neural Networks have shown a promise for low latency and low power AI when deployed on a neuromorphic hardware e.g., Intel's Loihi. In this paper, we present a Spiking Reservoir Computing model, based on the Legendre Memory Units which processes temporal data on Loihi hardware. Such a model is greatly suitable for the battery-powered AI enabled edge devices which call for a prompt processing of the temporal sensor-signals with high energy efficiency. We experiment our model with the ECG5000 dataset on the Loihi boards to show its efficacy.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Low latency and low energy consumption are the indispensable characteristics of Edge Computing applications. With the fusion of Edge Computing and Artificial Intelligence (AI) into Edge Intelligence, this need is more than ever. Of late, Spiking Neural Networks have shown a promise for low latency and low power AI when deployed on a neuromorphic hardware e.g., Intel's Loihi. In this paper, we present a Spiking Reservoir Computing model, based on the Legendre Memory Units which processes temporal data on Loihi hardware. Such a model is greatly suitable for the battery-powered AI enabled edge devices which call for a prompt processing of the temporal sensor-signals with high energy efficiency. We experiment our model with the ECG5000 dataset on the Loihi boards to show its efficacy.
Loihi上时间边缘智能的峰值库计算
低延迟和低能耗是边缘计算应用不可缺少的特点。随着边缘计算和人工智能(AI)融合到边缘智能中,这种需求比以往任何时候都更加迫切。最近,当部署在神经形态硬件(如英特尔的Loihi)上时,spike Neural Networks显示出低延迟和低功耗AI的前景。在本文中,我们提出了一个基于Legendre记忆单元的峰值水库计算模型,该模型在Loihi硬件上处理时间数据。该模型非常适合电池供电的人工智能边缘设备,这些设备需要以高能效快速处理时间传感器信号。我们在Loihi板上用ECG5000数据集实验了我们的模型,以显示其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信