A Framework for Vision-Based Multiple Target Finding and Action Using Multirotor UAVs

Ajmal Hinas, R. Ragel, Jonathan M. Roberts, Felipe Gonzalez
{"title":"A Framework for Vision-Based Multiple Target Finding and Action Using Multirotor UAVs","authors":"Ajmal Hinas, R. Ragel, Jonathan M. Roberts, Felipe Gonzalez","doi":"10.1109/ICUAS.2018.8453313","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for vision-based target finding and action using a multirotor UAV system. The proposed framework detects and tracks a set of ground targets by using a vision-based position estimation technique. An internal map created using the relative locations of the adjacent targets is used to overcome the vision-based position estimation error and GPS noise and drift. The framework was implemented using the Robotic Operating System (ROS) and tested in the Software in the Loop (SITL) Simulation with the Gazebo robotics simulator. The test results demonstrate that the framework is robust to drift and errors, and able to perform the intended tasks successfully.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a framework for vision-based target finding and action using a multirotor UAV system. The proposed framework detects and tracks a set of ground targets by using a vision-based position estimation technique. An internal map created using the relative locations of the adjacent targets is used to overcome the vision-based position estimation error and GPS noise and drift. The framework was implemented using the Robotic Operating System (ROS) and tested in the Software in the Loop (SITL) Simulation with the Gazebo robotics simulator. The test results demonstrate that the framework is robust to drift and errors, and able to perform the intended tasks successfully.
基于视觉的多旋翼无人机多目标发现与行动框架
提出了一种基于视觉的多旋翼无人机目标发现与行动框架。该框架利用基于视觉的位置估计技术检测和跟踪一组地面目标。利用相邻目标的相对位置创建内部地图,克服了基于视觉的位置估计误差和GPS噪声和漂移。该框架使用机器人操作系统(ROS)实现,并在Gazebo机器人模拟器的软件在循环(SITL)仿真中进行了测试。测试结果表明,该框架对漂移和误差具有较强的鲁棒性,能够成功完成预期任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信