A. Romanowski, K. Grudzień, Hela Garbaa, L. Jackowska-Strumillo
{"title":"Parametric methods for ECT inverse problem solution in solid flow monitoring","authors":"A. Romanowski, K. Grudzień, Hela Garbaa, L. Jackowska-Strumillo","doi":"10.5604/01.3001.0010.4582","DOIUrl":null,"url":null,"abstract":". The article presents the parametrisation-based methods of monitoring of the process of gravitational silo discharging with aid of capacitance tomography techniques. Proposed methods cover probabilistic Bayes’ modelling, including spatial and temporal analysis and Markov chain Monte Carlo methods as well as process parametrisation with artificial neural networks. In contrast to classical image reconstruction-based methods, parametric modelling allows to omit this stage as well as abandon the associated reconstruction errors. Parametric modelling enables the direct analysis of significant parameters of investigated process that in turn results in easier incorporation into the control feedback loop. Presented examples are given for the gravitational flow of bulk solids in silos.","PeriodicalId":142227,"journal":{"name":"Informatics, Control, Measurement in Economy and Environment Protection","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics, Control, Measurement in Economy and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0010.4582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
. The article presents the parametrisation-based methods of monitoring of the process of gravitational silo discharging with aid of capacitance tomography techniques. Proposed methods cover probabilistic Bayes’ modelling, including spatial and temporal analysis and Markov chain Monte Carlo methods as well as process parametrisation with artificial neural networks. In contrast to classical image reconstruction-based methods, parametric modelling allows to omit this stage as well as abandon the associated reconstruction errors. Parametric modelling enables the direct analysis of significant parameters of investigated process that in turn results in easier incorporation into the control feedback loop. Presented examples are given for the gravitational flow of bulk solids in silos.