Suicide Risk Assessment with Multi-level Dual-Context Language and BERT

Matthew Matero, Akash Idnani, Youngseo Son, Salvatore Giorgi, Huy-Hien Vu, Mohammadzaman Zamani, Parth Limbachiya, Sharath Chandra Guntuku, H. A. Schwartz
{"title":"Suicide Risk Assessment with Multi-level Dual-Context Language and BERT","authors":"Matthew Matero, Akash Idnani, Youngseo Son, Salvatore Giorgi, Huy-Hien Vu, Mohammadzaman Zamani, Parth Limbachiya, Sharath Chandra Guntuku, H. A. Schwartz","doi":"10.18653/v1/W19-3005","DOIUrl":null,"url":null,"abstract":"Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with “any-risk”, personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.","PeriodicalId":201097,"journal":{"name":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with “any-risk”, personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.
基于多层次双语境语言和BERT的自杀风险评估
心理健康预测系统通常从单一上下文(例如Twitter帖子、状态更新或论坛帖子)对语言进行建模,并且通常仅限于单一分析级别(例如消息级别或用户级别)。在这里,我们将这些片段结合在一起,探索在支持论坛(CLPsych-2019共享任务)上使用开放词汇(BERT嵌入、主题)和理论特征(情绪表达词汇、个性)进行自杀风险评估的任务。我们使用了基于双重上下文的方法(将自杀论坛的内容与其他内容分开建模),建立在传统的ML模型和具有用户因素适应性的新型双重RNN架构之上。我们发现,虽然来自自杀情境的影响将无风险者与有“任何风险”者区分开来,但来自非自杀情境的人格因素将风险水平区分为:低、中、高风险。在共享任务中,我们的双上下文方法(在官方结果中被列为SBU-HLAB)使用自杀上下文和非自杀帖子(任务B)的组合实现了最先进的预测自杀风险的性能,比隐藏测试集标签获得了0.50的F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信