Sensitivity of Hosting Capacity to Data Resolution and Uncertainty Modeling

Mohammad Seydali Seyf Abad, Jin Ma, Diwei Zhang, Ahmad Shabir Ahmadyar, H. Marzooghi
{"title":"Sensitivity of Hosting Capacity to Data Resolution and Uncertainty Modeling","authors":"Mohammad Seydali Seyf Abad, Jin Ma, Diwei Zhang, Ahmad Shabir Ahmadyar, H. Marzooghi","doi":"10.1109/AUPEC.2018.8757980","DOIUrl":null,"url":null,"abstract":"Integration limits of distributed generations (DGs) in distribution networks, i.e. the hosting capacity (HC), are highly dependent on uncertainties associated with the size, location and output power of DGs. Addressing these uncertainties to a great extent is reliant on the availability and resolution of the historical data. This paper investigates the effects of data resolution and uncertainty modeling on the HC calculation. To do so, a mathematical model of the HC problem is used in a Monte Carlo-based framework. Our analysis is carried out on an agricultural distribution network in Australia. It is shown that decreasing the resolution of historical data shifts the probability distribution function of the HC towards right implying an increase in the estimated HC. Further, it is illustrated that assuming a fixed capacity for DGs instead of proper modeling of the uncertainty associated with their size results in underestimation of the HC in the network.","PeriodicalId":314530,"journal":{"name":"2018 Australasian Universities Power Engineering Conference (AUPEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2018.8757980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Integration limits of distributed generations (DGs) in distribution networks, i.e. the hosting capacity (HC), are highly dependent on uncertainties associated with the size, location and output power of DGs. Addressing these uncertainties to a great extent is reliant on the availability and resolution of the historical data. This paper investigates the effects of data resolution and uncertainty modeling on the HC calculation. To do so, a mathematical model of the HC problem is used in a Monte Carlo-based framework. Our analysis is carried out on an agricultural distribution network in Australia. It is shown that decreasing the resolution of historical data shifts the probability distribution function of the HC towards right implying an increase in the estimated HC. Further, it is illustrated that assuming a fixed capacity for DGs instead of proper modeling of the uncertainty associated with their size results in underestimation of the HC in the network.
承载能力对数据分辨率和不确定性建模的敏感性
分布式代(dg)在配电网中的集成极限,即承载能力(HC),高度依赖于dg的大小、位置和输出功率等不确定性。解决这些不确定性在很大程度上依赖于历史数据的可用性和分辨率。本文研究了数据分辨率和不确定性建模对HC计算的影响。为此,在基于蒙特卡罗的框架中使用了HC问题的数学模型。我们的分析是在澳大利亚的一个农业分销网络上进行的。结果表明,降低历史数据的分辨率会使HC的概率分布函数向右移动,这意味着估计HC的增加。此外,研究表明,假设dg的容量是固定的,而不是对与其大小相关的不确定性进行适当的建模,会导致对网络中HC的低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信