{"title":"Using Machine Learning to Represent Electromagnetic Characteristics of Arbitrarily-shaped Targets","authors":"Xiao-Min Pan, Bo-Yue Song, Si-Lu Huang, X. Sheng","doi":"10.1109/COMPEM.2019.8778911","DOIUrl":null,"url":null,"abstract":"A general data sparse representation of electromagnetic characteristics of an arbitrarily-shaped target is developed by using the machine learning model. The data sparse representation of the electromagnetic response is firstly figured out by the skeletonization technique. The machine learning approach is then employed to construct a general and flexible model which can capture the electromagnetic characteristics of the target of interest. Numerical experiments are conducted to validate the performance of the model.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8778911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A general data sparse representation of electromagnetic characteristics of an arbitrarily-shaped target is developed by using the machine learning model. The data sparse representation of the electromagnetic response is firstly figured out by the skeletonization technique. The machine learning approach is then employed to construct a general and flexible model which can capture the electromagnetic characteristics of the target of interest. Numerical experiments are conducted to validate the performance of the model.