Testing random variables for independence and identity

Tugkan Batu, L. Fortnow, E. Fischer, Ravi Kumar, R. Rubinfeld, Patrick White
{"title":"Testing random variables for independence and identity","authors":"Tugkan Batu, L. Fortnow, E. Fischer, Ravi Kumar, R. Rubinfeld, Patrick White","doi":"10.1109/SFCS.2001.959920","DOIUrl":null,"url":null,"abstract":"Given access to independent samples of a distribution A over [n] /spl times/ [m], we show how to test whether the distributions formed by projecting A to each coordinate are independent, i.e., whether A is /spl epsi/-close in the L/sub 1/ norm to the product distribution A/sub 1//spl times/A/sub 2/ for some distributions A/sub 1/ over [n] and A/sub 2/ over [m]. The sample complexity of our test is O/spl tilde/(n/sup 2/3/m/sup 1/3/poly(/spl epsi//sup -1/)), assuming without loss of generality that m/spl les/n. We also give a matching lower bound, up to poly (log n, /spl epsi//sup -1/) factors. Furthermore, given access to samples of a distribution X over [n], we show how to test if X is /spl epsi/-close in L/sub 1/ norm to an explicitly specified distribution Y. Our test uses O/spl tilde/(n/sup 1/2/poly(/spl epsi//sup -1/)) samples, which nearly matches the known tight bounds for the case when Y is uniform.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"224","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 224

Abstract

Given access to independent samples of a distribution A over [n] /spl times/ [m], we show how to test whether the distributions formed by projecting A to each coordinate are independent, i.e., whether A is /spl epsi/-close in the L/sub 1/ norm to the product distribution A/sub 1//spl times/A/sub 2/ for some distributions A/sub 1/ over [n] and A/sub 2/ over [m]. The sample complexity of our test is O/spl tilde/(n/sup 2/3/m/sup 1/3/poly(/spl epsi//sup -1/)), assuming without loss of generality that m/spl les/n. We also give a matching lower bound, up to poly (log n, /spl epsi//sup -1/) factors. Furthermore, given access to samples of a distribution X over [n], we show how to test if X is /spl epsi/-close in L/sub 1/ norm to an explicitly specified distribution Y. Our test uses O/spl tilde/(n/sup 1/2/poly(/spl epsi//sup -1/)) samples, which nearly matches the known tight bounds for the case when Y is uniform.
测试随机变量的独立性和同一性
给定分布a / [n] /spl乘以/ [m]的独立样本,我们展示了如何测试通过将a投影到每个坐标形成的分布是否独立,即,对于某些分布a /sub 1// [n]和a /sub 2/ / [m], a在L/sub 1/范数中是否/spl epsi/-接近乘积分布a /sub 1//spl乘以/ a /sub 2/。我们测试的样本复杂性是O/spl波浪/(n/sup 2/3/m/sup 1/3/poly(/spl epsi//sup -1/)),假设m/spl小于/n,而不损失一般性。我们还给出了一个匹配的下界,直到poly (log n, /spl epsi//sup -1/)因子。此外,给定对分布X / [n]的样本的访问权,我们展示了如何测试X在L/sub 1/范数中是否/spl epsi/-接近显式指定的分布Y。我们的测试使用O/spl波浪/(n/sup 1/2/poly(/spl epsi//sup -1/))样本,这几乎与Y是均匀的情况下的已知紧密界限相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信