Discovering Hidden Course Requirements and Student Competences from Grade Data

Mara Houbraken, Chang Sun, E. Smirnov, K. Driessens
{"title":"Discovering Hidden Course Requirements and Student Competences from Grade Data","authors":"Mara Houbraken, Chang Sun, E. Smirnov, K. Driessens","doi":"10.1145/3099023.3099034","DOIUrl":null,"url":null,"abstract":"This paper presents a data driven approach to autonomous course-competency requirement and student-competency level discovery starting from the grades obtained by a sufficiently large set of students. The approach relies on collaborative filtering techniques, more precisely matrix decomposition, to derive the hidden competency requirements and levels that together should be responsible for observed grades. The discovered hidden features are translated into human understandable competencies by matching the computed values to expert input. The approach also allows for grade prediction for so far unobserved student course combinations, allowing for personalized study planning and student guidance. The technique is demonstrated on data from a \"Data Science and Knowledge Engineering\" Bachelor study, Maastricht University.","PeriodicalId":219391,"journal":{"name":"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3099023.3099034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a data driven approach to autonomous course-competency requirement and student-competency level discovery starting from the grades obtained by a sufficiently large set of students. The approach relies on collaborative filtering techniques, more precisely matrix decomposition, to derive the hidden competency requirements and levels that together should be responsible for observed grades. The discovered hidden features are translated into human understandable competencies by matching the computed values to expert input. The approach also allows for grade prediction for so far unobserved student course combinations, allowing for personalized study planning and student guidance. The technique is demonstrated on data from a "Data Science and Knowledge Engineering" Bachelor study, Maastricht University.
从成绩数据中发现隐藏的课程要求和学生能力
本文提出了一种数据驱动的方法,从足够大的学生群体获得的成绩开始,自主地进行课程能力要求和学生能力水平发现。该方法依赖于协同过滤技术,更准确地说,是矩阵分解,以得出隐藏的能力需求和水平,它们应该共同负责观察到的分数。通过将计算值与专家输入相匹配,将发现的隐藏特征转换为人类可理解的能力。该方法还可以预测到目前为止尚未观察到的学生课程组合的成绩,从而实现个性化的学习计划和学生指导。该技术在马斯特里赫特大学“数据科学与知识工程”学士学位研究的数据上得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信