Marked Multitarget Intensity Filters

R. Streit
{"title":"Marked Multitarget Intensity Filters","authors":"R. Streit","doi":"10.1109/ICIF.2010.5711924","DOIUrl":null,"url":null,"abstract":"Probability Hypothesis Density and other intensity filters are based on modeling the multitarget state as a realization of a Poisson point process (PPP). Target identifiability is lost in these models; consequently, the filters require targets to have the same motion models and data likelihood functions to be the same for all targets. These are unrealistic limitations in some applications. The Marked Multitarget Intensity Filter (MMIF) presented here enables the use of heterogeneous target motion models and data likelihood functions. The MMIF uses a marked PPP target model together with a parameterized PPP intensity function. The parametric model is an affine, joint, linear-Gaussian sum on the joint measurement-target space. The “at most one measurement per target” rule is enforced in the mean.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Probability Hypothesis Density and other intensity filters are based on modeling the multitarget state as a realization of a Poisson point process (PPP). Target identifiability is lost in these models; consequently, the filters require targets to have the same motion models and data likelihood functions to be the same for all targets. These are unrealistic limitations in some applications. The Marked Multitarget Intensity Filter (MMIF) presented here enables the use of heterogeneous target motion models and data likelihood functions. The MMIF uses a marked PPP target model together with a parameterized PPP intensity function. The parametric model is an affine, joint, linear-Gaussian sum on the joint measurement-target space. The “at most one measurement per target” rule is enforced in the mean.
标记多目标强度过滤器
概率假设密度和其他强度滤波器是基于将多目标状态建模为泊松点过程(PPP)的实现。这些模型失去了目标的可识别性;因此,过滤器要求目标具有相同的运动模型,并且所有目标的数据似然函数都相同。在某些应用程序中,这些是不切实际的限制。本文提出的标记多目标强度滤波器(MMIF)可以使用异构目标运动模型和数据似然函数。MMIF使用有标记的PPP目标模型和参数化的PPP强度函数。参数模型是在联合测量-目标空间上的仿射联合线性高斯和。“每个目标最多测量一次”的规则在平均值中强制执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信