A hierarchical feature model for multi-target tracking

M. Ullah, A. Mohammed, F. A. Cheikh, Zhaohui Wang
{"title":"A hierarchical feature model for multi-target tracking","authors":"M. Ullah, A. Mohammed, F. A. Cheikh, Zhaohui Wang","doi":"10.1109/ICIP.2017.8296755","DOIUrl":null,"url":null,"abstract":"We propose a novel Hierarchical Feature Model (HFM) for multi-target tracking. The traditional tracking algorithms use handcrafted features that cannot track targets accurately when the target model changes due to articulation, illumination intensity variation or perspective distortions. Our HFM explore deep features to model the appearance of targets. Then, we use an unsupervised dimensionality reduction for sparse representation of the feature vectors to cope with the time-critical nature of the tracking problem. Subsequently, a Bayesian filter is adopted as the tracker and a discrete combinatorial optimization is considered for target association. We compare our proposed HFM against 4 state-of-the-art trackers using 4 benchmark datasets. The experimental results show that our HFM outperforms all the state-of-the-art methods in terms of both Multi Object Tracking Accuracy (MOTA) and Multi Object Tracking Precision (MOTP).","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We propose a novel Hierarchical Feature Model (HFM) for multi-target tracking. The traditional tracking algorithms use handcrafted features that cannot track targets accurately when the target model changes due to articulation, illumination intensity variation or perspective distortions. Our HFM explore deep features to model the appearance of targets. Then, we use an unsupervised dimensionality reduction for sparse representation of the feature vectors to cope with the time-critical nature of the tracking problem. Subsequently, a Bayesian filter is adopted as the tracker and a discrete combinatorial optimization is considered for target association. We compare our proposed HFM against 4 state-of-the-art trackers using 4 benchmark datasets. The experimental results show that our HFM outperforms all the state-of-the-art methods in terms of both Multi Object Tracking Accuracy (MOTA) and Multi Object Tracking Precision (MOTP).
多目标跟踪的分层特征模型
提出了一种新的多目标跟踪层次特征模型(HFM)。传统的跟踪算法使用手工制作的特征,当目标模型由于清晰度、光照强度变化或视角扭曲而发生变化时,无法准确跟踪目标。我们的HFM探索深层特征来模拟目标的外观。然后,我们使用无监督降维对特征向量进行稀疏表示,以应对跟踪问题的时间关键性质。随后,采用贝叶斯滤波器作为跟踪器,并考虑离散组合优化方法进行目标关联。我们使用4个基准数据集将我们提出的HFM与4个最先进的跟踪器进行比较。实验结果表明,该方法在多目标跟踪精度(MOTA)和多目标跟踪精度(MOTP)方面都优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信