{"title":"Fuzzy Parking Manoeuvres of Wheeled Mobile Robots","authors":"A. Khoukhi, L. Baron, M. Balazinski","doi":"10.1109/NAFIPS.2007.383811","DOIUrl":null,"url":null,"abstract":"This work deals with the parking manoeuvres problem for a wheeled mobile robot (WMR). The robot has the same non-holonomic kinematic constraint that has a car vehicle. This constraint makes the robot having its direction always tangent to the trajectory. Two sub-cases of parking problems are considered. These are forward and backward maneuvers, aiming to stabilize the robot at a pre-specified pose. The environment is assumed to be known, obstacle-free and a local map of the area is already done by prior processing the information obtained from ultrasonic sensors mounted on the robot. A linguistic fuzzy model to represent the robot and its environment is developed. From this model, the parking manoeuvres are carried out by mimicking a human car driver using a fuzzy control system. Upon simulation tests this approach has been proved efficient giving very encouraging results.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This work deals with the parking manoeuvres problem for a wheeled mobile robot (WMR). The robot has the same non-holonomic kinematic constraint that has a car vehicle. This constraint makes the robot having its direction always tangent to the trajectory. Two sub-cases of parking problems are considered. These are forward and backward maneuvers, aiming to stabilize the robot at a pre-specified pose. The environment is assumed to be known, obstacle-free and a local map of the area is already done by prior processing the information obtained from ultrasonic sensors mounted on the robot. A linguistic fuzzy model to represent the robot and its environment is developed. From this model, the parking manoeuvres are carried out by mimicking a human car driver using a fuzzy control system. Upon simulation tests this approach has been proved efficient giving very encouraging results.