{"title":"Stipple removal in extreme-tone regions","authors":"Rosa Azami, Lars Doyle, D. Mould","doi":"10.2312/exp.20191083","DOIUrl":null,"url":null,"abstract":"Conventional tone-preserving stippling struggles with extreme-tone regions. Dark regions require immense quantities of stipples, while light regions become littered with stipples that are distracting and, because of their low density, cannot communicate any image features that may be present. We propose a method to address these problems, augmenting existing stippling methods. We will cover dark regions with solid polygons rather than stipples; in light areas, we both preprocess the image to prevent stipple placement in the very lightest areas and postprocess the stipple distribution to remove stipples that contribute little to the image structure. Our modified stipple images have better visual quality than the originals despite using fewer stipples.","PeriodicalId":407491,"journal":{"name":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/exp.20191083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Conventional tone-preserving stippling struggles with extreme-tone regions. Dark regions require immense quantities of stipples, while light regions become littered with stipples that are distracting and, because of their low density, cannot communicate any image features that may be present. We propose a method to address these problems, augmenting existing stippling methods. We will cover dark regions with solid polygons rather than stipples; in light areas, we both preprocess the image to prevent stipple placement in the very lightest areas and postprocess the stipple distribution to remove stipples that contribute little to the image structure. Our modified stipple images have better visual quality than the originals despite using fewer stipples.