Energy Efficiency of Photonic Convolution for Artificial Intelligence Workloads

J. Weiss, P. Stark, Lorenz K. Muller, F. Horst, R. Dangel, B. Offrein
{"title":"Energy Efficiency of Photonic Convolution for Artificial Intelligence Workloads","authors":"J. Weiss, P. Stark, Lorenz K. Muller, F. Horst, R. Dangel, B. Offrein","doi":"10.1109/sips52927.2021.00052","DOIUrl":null,"url":null,"abstract":"Energy Efficiency of Artificial Intelligence (AI) workloads increasingly becomes a challenge as i) they are being adopted by a growing community of industries and ii) the AI models used are growing tremendously in complexity. We can identify certain common operations which contribute to the bulk of the computations of these workloads and thus also to the overall energy footprint. Besides data-transport and generic multiply-accumulate operations, convolutions with relatively small kernels constitute a substantial part of today’s AI workloads. In this paper we will investigate potential and limitations of optical convolutional processors for AI workloads to improve their energy efficiency. We underline our findings with a thorough system analysis and with simulation and measurement results of a sequential lattice filter type optical convolutional processor on silicon.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sips52927.2021.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy Efficiency of Artificial Intelligence (AI) workloads increasingly becomes a challenge as i) they are being adopted by a growing community of industries and ii) the AI models used are growing tremendously in complexity. We can identify certain common operations which contribute to the bulk of the computations of these workloads and thus also to the overall energy footprint. Besides data-transport and generic multiply-accumulate operations, convolutions with relatively small kernels constitute a substantial part of today’s AI workloads. In this paper we will investigate potential and limitations of optical convolutional processors for AI workloads to improve their energy efficiency. We underline our findings with a thorough system analysis and with simulation and measurement results of a sequential lattice filter type optical convolutional processor on silicon.
用于人工智能工作负载的光子卷积能量效率
人工智能(AI)工作负载的能源效率日益成为一个挑战,因为i)它们被越来越多的行业采用,ii)所使用的人工智能模型的复杂性正在急剧增长。我们可以确定某些常见的操作,这些操作会对这些工作负载的大量计算产生影响,从而也会对总体能源足迹产生影响。除了数据传输和一般的乘法累加操作外,具有相对较小内核的卷积构成了当今人工智能工作负载的很大一部分。在本文中,我们将研究光学卷积处理器在人工智能工作负载中的潜力和局限性,以提高其能源效率。我们通过全面的系统分析以及硅上顺序晶格滤波器型光学卷积处理器的模拟和测量结果来强调我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信