V2X communication Technology Identification Using Residual Neural Network

Amal El Abbaoui, F. Elbahhar, Rajaa El Assali
{"title":"V2X communication Technology Identification Using Residual Neural Network","authors":"Amal El Abbaoui, F. Elbahhar, Rajaa El Assali","doi":"10.53375/icmame.2023.356","DOIUrl":null,"url":null,"abstract":"Signal identification is a critical topic in new communication systems, especially for cognitive radio to have an optimal sharing of radio resources. Some existing techniques, used to identify and classify wireless communication signals, show strong performance, but their sensitivity to noise levels or high computational complexity pose challenges. In this paper, we propose to use a Deep Learning technique, based on Residual Neural Networks (ResNet) to detect and classify V2X (vehicle-to-everything) signals. Three V2X communication technologies are studied and evaluated: ITS-G5, 4G, and 5G. The proposed model offers robust performance compared to a classical CNN-1D model even for the low SNR value.","PeriodicalId":385901,"journal":{"name":"ICMAME 2023 Conference Proceedings","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMAME 2023 Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53375/icmame.2023.356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signal identification is a critical topic in new communication systems, especially for cognitive radio to have an optimal sharing of radio resources. Some existing techniques, used to identify and classify wireless communication signals, show strong performance, but their sensitivity to noise levels or high computational complexity pose challenges. In this paper, we propose to use a Deep Learning technique, based on Residual Neural Networks (ResNet) to detect and classify V2X (vehicle-to-everything) signals. Three V2X communication technologies are studied and evaluated: ITS-G5, 4G, and 5G. The proposed model offers robust performance compared to a classical CNN-1D model even for the low SNR value.
基于残差神经网络的V2X通信技术识别
在新型通信系统中,信号识别是一个关键的问题,特别是对于认知无线电来说,要实现无线电资源的最佳共享。一些现有的用于识别和分类无线通信信号的技术表现出很强的性能,但它们对噪声水平的敏感性或高计算复杂度构成了挑战。在本文中,我们建议使用基于残差神经网络(ResNet)的深度学习技术来检测和分类V2X(车对一切)信号。对ITS-G5、4G、5G三种V2X通信技术进行了研究和评估。与经典的CNN-1D模型相比,即使在低信噪比的情况下,该模型也具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信