Defect estimation in Adams PECE codes

D. Higham
{"title":"Defect estimation in Adams PECE codes","authors":"D. Higham","doi":"10.1137/0910056","DOIUrl":null,"url":null,"abstract":"Many modern codes for solving the nonstiff initial value problem $y'(x) - f(x,y(x)) = 0,y(a)$ given, $a \\leqq x \\leqq b$, produce, in addition to a discretised solution, a function $p(x)$ that approximates $y(x)$ over $[a,b]$. The associated defect $\\delta (x): = p'(x) - f(x,p(x))$ is a natural measure of the error. In this paper the problem of reliably estimating the defect in Adams PECE methods is considered. Attention is focused on the widely used Shampine–Gordon variable order, variable step code fitted with a continuously differentiable interpolant $p(x)$ due to Watts and Shampine [SIAM .J. Sci. Statist. Comput, 7 (1986), pp. 334–345]. It is shown that over each step an asymptotically correct estimate of the defect can be obtained by sampling at a single, suitably chosen point. It is also shown that a valid “free” estimate can be formed without recourse to sampling. Numerical results are given to support the theory.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Many modern codes for solving the nonstiff initial value problem $y'(x) - f(x,y(x)) = 0,y(a)$ given, $a \leqq x \leqq b$, produce, in addition to a discretised solution, a function $p(x)$ that approximates $y(x)$ over $[a,b]$. The associated defect $\delta (x): = p'(x) - f(x,p(x))$ is a natural measure of the error. In this paper the problem of reliably estimating the defect in Adams PECE methods is considered. Attention is focused on the widely used Shampine–Gordon variable order, variable step code fitted with a continuously differentiable interpolant $p(x)$ due to Watts and Shampine [SIAM .J. Sci. Statist. Comput, 7 (1986), pp. 334–345]. It is shown that over each step an asymptotically correct estimate of the defect can be obtained by sampling at a single, suitably chosen point. It is also shown that a valid “free” estimate can be formed without recourse to sampling. Numerical results are given to support the theory.
Adams PECE代码的缺陷估计
许多用于求解给定的非刚性初值问题$y'(x) - f(x,y(x)) = 0,y(a)$ ($a \leqq x \leqq b$)的现代代码除了产生离散解外,还产生一个近似于$y(x)$ / $[a,b]$的函数$p(x)$。相关的缺陷$\delta (x): = p'(x) - f(x,p(x))$是错误的自然度量。本文研究了Adams PECE方法中缺陷的可靠估计问题。由于Watts和Shampine [SIAM . j]的原因,我们将注意力集中在广泛使用的Shampine - gordon变阶、变步长代码中,该代码与连续可微插值器$p(x)$配合。科学。统计学家。计算机,7(1986),第334-345页]。结果表明,在每一步中,通过在单个适当选择的点上采样,可以得到缺陷的渐近正确估计。同时也证明了一个有效的“自由”估计可以在不依赖抽样的情况下形成。数值结果支持了该理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信