On (acyclic) proper orientations and the cartesian product

J. Araújo, Alexandre A. Cezar
{"title":"On (acyclic) proper orientations and the cartesian product","authors":"J. Araújo, Alexandre A. Cezar","doi":"10.5753/etc.2023.230546","DOIUrl":null,"url":null,"abstract":"Given an orientation D of the edges of a simple graph G, the indegree of a vertex v ∈ V(G), dD(v), is the number of arcs with head in v. Such orientation induces a coloring φ(v) = dD(v) + 1 of G. We say that D is a proper k-orientation if φ is a proper (k + 1)-coloring of G. The proper orientation number of G, denoted by X(G), is the least positive integer k such that G admits a proper k-orientation. We study a variation of this problem where we consider the orientation D to be acyclic. To the best of our knowledge this is the first article considering this variation. Furthermore, we also study the parameter X for graphs obtained by the cartesian product of graphs, introducing the concept of discordant set of proper orientations, that is a set where in different orientations, the same vertex has different indegrees.","PeriodicalId":165974,"journal":{"name":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do VIII Encontro de Teoria da Computação (ETC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2023.230546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given an orientation D of the edges of a simple graph G, the indegree of a vertex v ∈ V(G), dD(v), is the number of arcs with head in v. Such orientation induces a coloring φ(v) = dD(v) + 1 of G. We say that D is a proper k-orientation if φ is a proper (k + 1)-coloring of G. The proper orientation number of G, denoted by X(G), is the least positive integer k such that G admits a proper k-orientation. We study a variation of this problem where we consider the orientation D to be acyclic. To the best of our knowledge this is the first article considering this variation. Furthermore, we also study the parameter X for graphs obtained by the cartesian product of graphs, introducing the concept of discordant set of proper orientations, that is a set where in different orientations, the same vertex has different indegrees.
在(无环)固有取向和笛卡尔积上
给定一个定向D的边缘一个简单图G,顶点的入度v∈v (G), dD (v),是弧的数目与头部定向诱导等诉着色φ(v) = dD (v) + 1 G .我们说D是一个适当的k-orientation如果φ是适当的(k + 1)着色的G G的数量适当的定位,用X (G),是最小的正整数k, G承认适当的k-orientation。我们研究了这个问题的一个变体,其中我们考虑方向D是无环的。据我们所知,这是第一篇考虑这种变化的文章。此外,我们还研究了由图的笛卡儿积得到的图的参数X,引入了固有方向的不协调集的概念,即在不同的方向上,同一顶点具有不同的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信