A Deep Neural Architecture for Decision-Aware Meta-Review Generation

Asheesh Kumar, Tirthankar Ghosal, Asif Ekbal
{"title":"A Deep Neural Architecture for Decision-Aware Meta-Review Generation","authors":"Asheesh Kumar, Tirthankar Ghosal, Asif Ekbal","doi":"10.1109/JCDL52503.2021.00064","DOIUrl":null,"url":null,"abstract":"Automatically generating meta-reviews from peer-reviews is a new and challenging task. Although close, the task is not precisely summarizing the peer-reviews. Usually, a conference chair or a journal editor writes a meta-review after going through the reviews written by the appointed reviewers, rounds of discussions with them, finally arriving at a consensus on the paper's fate. In essence, the meta-review texts are decision-aware, i.e., the meta reviewer already forms the decision before writing the meta-review, and the corresponding text conforms to that decision. We leverage this seed idea and design a deep neural architecture to generate decision-aware meta-reviews in this work. We propose a multi-encoder transformer network for peer-review decision prediction and subsequent meta-review generation. We analyze our output quantitatively and qualitatively and argue that quantitative text summarization metrics are not suitable for evaluating the generated meta-reviews. Our proposed model performs comparably with the recent state-of-the-art text summarization approaches. Qualitative evaluation of our model-generated output is encouraging on an open access peer reviews dataset that we curate from the open review platform. We make our data and codes available11https://www.iitp.ac.in/~ai-nlp-ml/resources.html# decision-aware-meta-review.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Automatically generating meta-reviews from peer-reviews is a new and challenging task. Although close, the task is not precisely summarizing the peer-reviews. Usually, a conference chair or a journal editor writes a meta-review after going through the reviews written by the appointed reviewers, rounds of discussions with them, finally arriving at a consensus on the paper's fate. In essence, the meta-review texts are decision-aware, i.e., the meta reviewer already forms the decision before writing the meta-review, and the corresponding text conforms to that decision. We leverage this seed idea and design a deep neural architecture to generate decision-aware meta-reviews in this work. We propose a multi-encoder transformer network for peer-review decision prediction and subsequent meta-review generation. We analyze our output quantitatively and qualitatively and argue that quantitative text summarization metrics are not suitable for evaluating the generated meta-reviews. Our proposed model performs comparably with the recent state-of-the-art text summarization approaches. Qualitative evaluation of our model-generated output is encouraging on an open access peer reviews dataset that we curate from the open review platform. We make our data and codes available11https://www.iitp.ac.in/~ai-nlp-ml/resources.html# decision-aware-meta-review.
决策感知元评论生成的深度神经体系结构
从同行评审中自动生成元评审是一项新的、具有挑战性的任务。虽然很接近,但这项任务并不是精确地总结同行评议。通常,会议主席或期刊编辑在审阅了指定的审稿人所写的审稿,与他们进行了几轮讨论,最终就论文的命运达成共识后,撰写了一篇元综述。从本质上讲,元评审文本是决策感知的,即元评审人在撰写元评审之前就已经做出了决定,相应的文本也符合这个决定。在这项工作中,我们利用这个种子思想设计了一个深度神经架构来生成决策感知元评论。我们提出了一个多编码器变压器网络,用于同行评审决策预测和随后的元评审生成。我们定量和定性地分析了我们的输出,并认为定量文本摘要度量不适合评估生成的元综述。我们提出的模型与最近最先进的文本摘要方法的性能相当。我们的模型生成的输出的定性评估是令人鼓舞的,在一个开放获取的同行评议数据集上,我们从开放评议平台策划。我们使我们的数据和代码可用11https://www.iitp.ac.in/~ai-nlp-ml/resources.html#决策意识-元审查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信