Decoding index finger position from EEG using random forests

S. Weichwald, Timm Meyer, B. Scholkopf, T. Ball, M. Grosse-Wentrup
{"title":"Decoding index finger position from EEG using random forests","authors":"S. Weichwald, Timm Meyer, B. Scholkopf, T. Ball, M. Grosse-Wentrup","doi":"10.1109/CIP.2014.6844513","DOIUrl":null,"url":null,"abstract":"While invasively recorded brain activity is known to provide detailed information on motor commands, it is an open question at what level of detail information about positions of body parts can be decoded from non-invasively acquired signals. In this work it is shown that index finger positions can be differentiated from non-invasive electroencephalographic (EEG) recordings in healthy human subjects. Using a leave-one-subject-out cross-validation procedure, a random forest distinguished different index finger positions on a numerical keyboard above chance-level accuracy. Among the different spectral features investigated, high β-power (20-30 Hz) over contralateral sensorimotor cortex carried most information about finger position. Thus, these findings indicate that finger position is in principle decodable from non-invasive features of brain activity that generalize across individuals.","PeriodicalId":117669,"journal":{"name":"2014 4th International Workshop on Cognitive Information Processing (CIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th International Workshop on Cognitive Information Processing (CIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2014.6844513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

While invasively recorded brain activity is known to provide detailed information on motor commands, it is an open question at what level of detail information about positions of body parts can be decoded from non-invasively acquired signals. In this work it is shown that index finger positions can be differentiated from non-invasive electroencephalographic (EEG) recordings in healthy human subjects. Using a leave-one-subject-out cross-validation procedure, a random forest distinguished different index finger positions on a numerical keyboard above chance-level accuracy. Among the different spectral features investigated, high β-power (20-30 Hz) over contralateral sensorimotor cortex carried most information about finger position. Thus, these findings indicate that finger position is in principle decodable from non-invasive features of brain activity that generalize across individuals.
利用随机森林从脑电图中解码食指位置
虽然已知侵入性记录的大脑活动可以提供有关运动命令的详细信息,但从非侵入性获取的信号中可以解码关于身体部位位置的详细信息的程度是一个悬而未决的问题。在这项工作中,它表明食指的位置可以从非侵入性脑电图(EEG)记录中区分出来。使用留一个主体的交叉验证程序,随机森林区分了数字键盘上不同的食指位置,高于机会级精度。在不同的频谱特征中,对侧感觉运动皮层的高β功率(20-30 Hz)携带的手指位置信息最多。因此,这些发现表明,手指位置原则上可以从个体普遍存在的非侵入性大脑活动特征中解码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信