K. Schjølberg-Henriksen, A. Ferber, S. Moe, D.T. Wang, R. W. Bernstein, H. Rogne, O. Schulz, G. Muller, M. Lloyd, Karl-Heinz Suphan
{"title":"Sensitive and Selective Photo Acoustic Gas Sensor Suitable for High Volume Manufacturing","authors":"K. Schjølberg-Henriksen, A. Ferber, S. Moe, D.T. Wang, R. W. Bernstein, H. Rogne, O. Schulz, G. Muller, M. Lloyd, Karl-Heinz Suphan","doi":"10.1109/ICSENS.2007.355563","DOIUrl":null,"url":null,"abstract":"Sensitive and selective gas measurements are crucial for a large variety of applications. This paper describes the manufacturing and characterisation of a photo acoustic gas sensor system. The system is based on a pressure sensor element with a sensitivity of 10 muV/V/Pa. 12 prototypes for measuring CO2 have been characterised. Detection limits ranging from 92 ppm to below 6 ppm CO2 were obtained, depending on the measurement time and photo acoustic cell design. No cross-sensitivity towards CO, CH4, or humidity could be observed in any of the sensors. The temperature drift of the uncompensated raw signal of two sensor designs was below 117 ppm CO2 in the range from 25degC to 50degC.","PeriodicalId":233838,"journal":{"name":"2006 5th IEEE Conference on Sensors","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th IEEE Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2007.355563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Sensitive and selective gas measurements are crucial for a large variety of applications. This paper describes the manufacturing and characterisation of a photo acoustic gas sensor system. The system is based on a pressure sensor element with a sensitivity of 10 muV/V/Pa. 12 prototypes for measuring CO2 have been characterised. Detection limits ranging from 92 ppm to below 6 ppm CO2 were obtained, depending on the measurement time and photo acoustic cell design. No cross-sensitivity towards CO, CH4, or humidity could be observed in any of the sensors. The temperature drift of the uncompensated raw signal of two sensor designs was below 117 ppm CO2 in the range from 25degC to 50degC.