Spatio-spectral Image Reconstruction Using Non-local Filtering

Frank Sippel, Jürgen Seiler, A. Kaup
{"title":"Spatio-spectral Image Reconstruction Using Non-local Filtering","authors":"Frank Sippel, Jürgen Seiler, A. Kaup","doi":"10.1109/VCIP53242.2021.9675421","DOIUrl":null,"url":null,"abstract":"In many image processing tasks it occurs that pixels or blocks of pixels are missing or lost in only some channels. For example during defective transmissions of RGB images, it may happen that one or more blocks in one color channel are lost. Nearly all modern applications in image processing and transmission use at least three color channels, some of the applications employ even more bands, for example in the infrared and ultraviolet area of the light spectrum. Typically, only some pixels and blocks in a subset of color channels are distorted. Thus, other channels can be used to reconstruct the missing pixels, which is called spatio-spectral reconstruction. Current state-of-the-art methods purely rely on the local neighborhood, which works well for homogeneous regions. However, in high-frequency regions like edges or textures, these methods fail to properly model the relationship between color bands. Hence, this paper introduces non-local filtering for building a linear regression model that describes the inter-band relationship and is used to reconstruct the missing pixels. Our novel method is able to increase the PSNR on average by 2 dB and yields visually much more appealing images in high-frequency regions.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In many image processing tasks it occurs that pixels or blocks of pixels are missing or lost in only some channels. For example during defective transmissions of RGB images, it may happen that one or more blocks in one color channel are lost. Nearly all modern applications in image processing and transmission use at least three color channels, some of the applications employ even more bands, for example in the infrared and ultraviolet area of the light spectrum. Typically, only some pixels and blocks in a subset of color channels are distorted. Thus, other channels can be used to reconstruct the missing pixels, which is called spatio-spectral reconstruction. Current state-of-the-art methods purely rely on the local neighborhood, which works well for homogeneous regions. However, in high-frequency regions like edges or textures, these methods fail to properly model the relationship between color bands. Hence, this paper introduces non-local filtering for building a linear regression model that describes the inter-band relationship and is used to reconstruct the missing pixels. Our novel method is able to increase the PSNR on average by 2 dB and yields visually much more appealing images in high-frequency regions.
基于非局部滤波的空间光谱图像重构
在许多图像处理任务中,只在某些通道中出现像素或像素块丢失或丢失的情况。例如,在有缺陷的RGB图像传输过程中,可能会发生一个颜色通道中的一个或多个块丢失的情况。几乎所有现代图像处理和传输的应用都至少使用三个颜色通道,有些应用甚至使用更多的波段,例如在光谱的红外和紫外区域。通常,只有颜色通道子集中的一些像素和块被扭曲。因此,可以使用其他通道来重建缺失的像素,这称为空间光谱重建。目前最先进的方法完全依赖于本地邻域,这对于同质区域效果很好。然而,在边缘或纹理等高频区域,这些方法无法正确地模拟色带之间的关系。因此,本文引入非局部滤波来建立描述带间关系的线性回归模型,并用于重建缺失的像素。我们的新方法能够将PSNR平均提高2 dB,并在高频区域产生视觉上更吸引人的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信