{"title":"Improving Memory Access Locality for Vectorized Bit-Serial Matrix Multiplication in Reconfigurable Computing","authors":"Lahiru Rasnayake, Magnus Själander","doi":"10.1109/ICFPT47387.2019.00081","DOIUrl":null,"url":null,"abstract":"Low-precision matrix multiplication has gained significant interest in the research community due to its applicability in the quantized neural network domain. As a result, a multitude of variable precision hardware designs have been proposed since fixed-precision hardware causes under-utilization of the hardware resources due to the low and varying precision in such applications. Bit-serial hardware takes advantage of the frugal nature of bit-serial computations that can operate on only as many bits as necessary. A bit-serial matrix multiplication consists of a summation of weighted binary matrix multiplications. In this work, we study the inherent locality of bit-serial matrix multiplications and propose a locality-aware scheduling algorithm that eliminates redundant data fetches from memory. The proposed schedule improves with up to 76% compared to a schedule that computes each binary matrix multiplication in sequence.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Low-precision matrix multiplication has gained significant interest in the research community due to its applicability in the quantized neural network domain. As a result, a multitude of variable precision hardware designs have been proposed since fixed-precision hardware causes under-utilization of the hardware resources due to the low and varying precision in such applications. Bit-serial hardware takes advantage of the frugal nature of bit-serial computations that can operate on only as many bits as necessary. A bit-serial matrix multiplication consists of a summation of weighted binary matrix multiplications. In this work, we study the inherent locality of bit-serial matrix multiplications and propose a locality-aware scheduling algorithm that eliminates redundant data fetches from memory. The proposed schedule improves with up to 76% compared to a schedule that computes each binary matrix multiplication in sequence.