Structured learning in recurrent neural network using genetic algorithm with internal copy operator

T. Kumagai, M. Wada, S. Mikami, R. Hashimoto
{"title":"Structured learning in recurrent neural network using genetic algorithm with internal copy operator","authors":"T. Kumagai, M. Wada, S. Mikami, R. Hashimoto","doi":"10.1109/ICEC.1997.592395","DOIUrl":null,"url":null,"abstract":"We compose a genetic algorithm that uses an internal copy operator for recurrent neural network learning. The internal copy operator copies one part of a gene to another part of the same gene. We show that the proposed algorithm accelerates learning. We also show that the internal copy operator organizes the structure in the network. The organized structure improves the learning ability and makes it possible to acquire a set of limit cycles easily.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We compose a genetic algorithm that uses an internal copy operator for recurrent neural network learning. The internal copy operator copies one part of a gene to another part of the same gene. We show that the proposed algorithm accelerates learning. We also show that the internal copy operator organizes the structure in the network. The organized structure improves the learning ability and makes it possible to acquire a set of limit cycles easily.
带内复制算子的遗传算法在递归神经网络中的结构化学习
我们编写了一个遗传算法,该算法使用内部复制算子进行循环神经网络学习。内部复制操作者将基因的一部分复制到同一基因的另一部分。我们证明了该算法加速了学习。我们还证明了内部复制操作符在网络中组织结构。这种有组织的结构提高了系统的学习能力,使其易于获取一组极限环成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信