Multi-core and multiprocessor implementation of numerical integration in Finite Element Method

J. Mamza, P. Makyla, A. Dziekonski, A. Lamecki, M. Mrozowski
{"title":"Multi-core and multiprocessor implementation of numerical integration in Finite Element Method","authors":"J. Mamza, P. Makyla, A. Dziekonski, A. Lamecki, M. Mrozowski","doi":"10.1109/MIKON.2012.6233633","DOIUrl":null,"url":null,"abstract":"The paper presents techniques for accelerating a numerical integration process which appears in the Finite Element Method. The acceleration is achieved by taking advantages of multi-core and multiprocessor devices. It is shown that using multi-core implementation with OpenMP and a GPU acceleration using CUDA architecture allows one to achieve the speedups by a factor of 5 and 10 on a CPU and GPUs, respectively.","PeriodicalId":425104,"journal":{"name":"2012 19th International Conference on Microwaves, Radar & Wireless Communications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 19th International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2012.6233633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents techniques for accelerating a numerical integration process which appears in the Finite Element Method. The acceleration is achieved by taking advantages of multi-core and multiprocessor devices. It is shown that using multi-core implementation with OpenMP and a GPU acceleration using CUDA architecture allows one to achieve the speedups by a factor of 5 and 10 on a CPU and GPUs, respectively.
有限元法中数值积分的多核多处理器实现
本文介绍了有限元法中出现的加速数值积分过程的技术。这种加速是通过利用多核和多处理器设备来实现的。结果表明,使用OpenMP的多核实现和使用CUDA架构的GPU加速可以分别在CPU和GPU上实现5倍和10倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信