{"title":"Improving Linearity of Circular Capacitive Pressure Sensor by Using a Dimple Mask","authors":"Ebrahim Khalil Bhuiyan, M. Shavezipur","doi":"10.1115/detc2020-22497","DOIUrl":null,"url":null,"abstract":"\n A new design concept for MEMS capacitive pressure sensors is presented that can be used to improve the linearity of the capacitance-pressure (C-T) response of the sensor. The sensor uses an extra dimple mask and etching step in the fabrication process of the device to create small bumps under the pressure sensitive and flexible membrane. Different designs, including a conventional sensor, are modeled and simulated using FEM coupled-field multiphysics solver in ANSYS®. Polycrystalline silicon is used as the structural material in the simulations. Coefficient of linear correlation between device capacitance and ambient pressure is used as the linearity factor to quantitatively compare the performance of different sensors. The finite element analysis show that the linearity factor improves from 0.938 for a conventional design to 0.973 for a design with a central bump. For a design with five bumps (one at the center of membrane and four off-center) the linearity factor increases to 0.997 for bumps of 1.5 μm thickness for wide pressure range of 0.0–4.0 MPa. The proposed design can be tailored for different applications that require certain sensor materials or different pressure ranges by using optimized sensor dimensions.","PeriodicalId":229776,"journal":{"name":"Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A new design concept for MEMS capacitive pressure sensors is presented that can be used to improve the linearity of the capacitance-pressure (C-T) response of the sensor. The sensor uses an extra dimple mask and etching step in the fabrication process of the device to create small bumps under the pressure sensitive and flexible membrane. Different designs, including a conventional sensor, are modeled and simulated using FEM coupled-field multiphysics solver in ANSYS®. Polycrystalline silicon is used as the structural material in the simulations. Coefficient of linear correlation between device capacitance and ambient pressure is used as the linearity factor to quantitatively compare the performance of different sensors. The finite element analysis show that the linearity factor improves from 0.938 for a conventional design to 0.973 for a design with a central bump. For a design with five bumps (one at the center of membrane and four off-center) the linearity factor increases to 0.997 for bumps of 1.5 μm thickness for wide pressure range of 0.0–4.0 MPa. The proposed design can be tailored for different applications that require certain sensor materials or different pressure ranges by using optimized sensor dimensions.