Agent-based power routing in Active Distribution Networks

P. Nguyen, W. Kling, P. Ribeiro
{"title":"Agent-based power routing in Active Distribution Networks","authors":"P. Nguyen, W. Kling, P. Ribeiro","doi":"10.1109/ISGTEurope.2011.6162682","DOIUrl":null,"url":null,"abstract":"The expected large-scale implementation of distributed generation (DG) requires a change in the current structure and operation of distribution networks. The future distribution network must be able to manage power flow in a bidirectional way, cope with uncertainties of renewable power generation and adjust to demands of more sophisticated customers. This paper introduces the concept of a power routing function to avoid congestion, minimize the operating cost, and adequately serve the requirements of customers. This function considers the optimal power flow as a problem of minimum cost flow in the graph theory. The Scaling Push-Relabel (SPR) algorithm is used to solve that problem. It will be implemented in a distributed agent environment which is suitable with a design concept of Active Distribution Networks. The performance of the power routing function is tested on a simulation of the medium voltage 32-bus network. Simulation results show the effectiveness and flexibility of the proposed function in dealing with issues of load demand increases and network configuration changes.","PeriodicalId":419250,"journal":{"name":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2011.6162682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The expected large-scale implementation of distributed generation (DG) requires a change in the current structure and operation of distribution networks. The future distribution network must be able to manage power flow in a bidirectional way, cope with uncertainties of renewable power generation and adjust to demands of more sophisticated customers. This paper introduces the concept of a power routing function to avoid congestion, minimize the operating cost, and adequately serve the requirements of customers. This function considers the optimal power flow as a problem of minimum cost flow in the graph theory. The Scaling Push-Relabel (SPR) algorithm is used to solve that problem. It will be implemented in a distributed agent environment which is suitable with a design concept of Active Distribution Networks. The performance of the power routing function is tested on a simulation of the medium voltage 32-bus network. Simulation results show the effectiveness and flexibility of the proposed function in dealing with issues of load demand increases and network configuration changes.
有源配电网中基于agent的电力路由
分布式发电(DG)的预期大规模实施要求改变当前配电网的结构和运行方式。未来的配电网络必须能够以双向方式管理电力流,应对可再生能源发电的不确定性,并根据更复杂的客户的需求进行调整。为了避免拥塞,降低运行成本,充分满足用户的需求,本文引入了电源路由功能的概念。该函数将最优潮流视为图论中的最小成本潮流问题。SPR (Scaling Push-Relabel)算法用于解决该问题。它将在一个适合于主动配电网络设计理念的分布式代理环境中实现。在中压32母线网络仿真中测试了电源路由功能的性能。仿真结果表明,所提函数在处理负荷需求增加和网络配置变化问题时具有有效性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信