CloST: a hadoop-based storage system for big spatio-temporal data analytics

Haoyu Tan, Wuman Luo, L. Ni
{"title":"CloST: a hadoop-based storage system for big spatio-temporal data analytics","authors":"Haoyu Tan, Wuman Luo, L. Ni","doi":"10.1145/2396761.2398589","DOIUrl":null,"url":null,"abstract":"During the past decade, various GPS-equipped devices have generated a tremendous amount of data with time and location information, which we refer to as big spatio-temporal data. In this paper, we present the design and implementation of CloST, a scalable big spatio-temporal data storage system to support data analytics using Hadoop. The main objective of CloST is to avoid scan the whole dataset when a spatio-temporal range is given. To this end, we propose a novel data model which has special treatments on three core attributes including an object id, a location and a time. Based on this data model, CloST hierarchically partitions data using all core attributes which enables efficient parallel processing of spatio-temporal range scans. According to the data characteristics, we devise a compact storage structure which reduces the storage size by an order of magnitude. In addition, we proposes scalable bulk loading algorithms capable of incrementally adding new data into the system. We conduct our experiments using a very large GPS log dataset and the results show that CloST has fast data loading speed, desirable scalability in query processing, as well as high data compression ratio.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

During the past decade, various GPS-equipped devices have generated a tremendous amount of data with time and location information, which we refer to as big spatio-temporal data. In this paper, we present the design and implementation of CloST, a scalable big spatio-temporal data storage system to support data analytics using Hadoop. The main objective of CloST is to avoid scan the whole dataset when a spatio-temporal range is given. To this end, we propose a novel data model which has special treatments on three core attributes including an object id, a location and a time. Based on this data model, CloST hierarchically partitions data using all core attributes which enables efficient parallel processing of spatio-temporal range scans. According to the data characteristics, we devise a compact storage structure which reduces the storage size by an order of magnitude. In addition, we proposes scalable bulk loading algorithms capable of incrementally adding new data into the system. We conduct our experiments using a very large GPS log dataset and the results show that CloST has fast data loading speed, desirable scalability in query processing, as well as high data compression ratio.
CloST:基于hadoop的大时空数据分析存储系统
在过去的十年中,各种配备gps的设备产生了大量的时间和位置信息数据,我们称之为大时空数据。在本文中,我们提出了CloST的设计和实现,CloST是一个可扩展的大型时空数据存储系统,支持使用Hadoop进行数据分析。CloST的主要目标是避免在给定时空范围时扫描整个数据集。为此,我们提出了一种新的数据模型,该模型对对象id、位置和时间三个核心属性进行了特殊处理。基于该数据模型,CloST使用所有核心属性分层划分数据,从而实现对时空范围扫描的高效并行处理。根据数据的特点,我们设计了一种紧凑的存储结构,将存储空间减小了一个数量级。此外,我们提出了可扩展的批量加载算法,能够增量地向系统中添加新数据。我们使用一个非常大的GPS日志数据集进行了实验,结果表明CloST具有快速的数据加载速度、良好的查询处理可扩展性和较高的数据压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信