Visualization of Big Data Text Analytics in Financial Industry: A Case Study of Topic Extraction for Italian Banks

Z. Krstic, S. Seljan, J. Zoroja
{"title":"Visualization of Big Data Text Analytics in Financial Industry: A Case Study of Topic Extraction for Italian Banks","authors":"Z. Krstic, S. Seljan, J. Zoroja","doi":"10.2139/ssrn.3490108","DOIUrl":null,"url":null,"abstract":"Textual data and analysis can derive new insights and bring valuable business insights. These insights can be further leveraged by making better future business decisions. Sources that are used for text analysis in financial industry vary from internal word documents, email to external sources like social media, websites or open data. The system described in this paper will utilize data from social media (Twitter) and tweets related to Italian banks, in Italian. This system is based on open source tools (R language) and topic extraction model was created to gather valuable information. This paper describes methods used for data ingestion, modelling, visualizations of results and insights.","PeriodicalId":286440,"journal":{"name":"CompSciRN: Theory of Data (Topic)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Theory of Data (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3490108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Textual data and analysis can derive new insights and bring valuable business insights. These insights can be further leveraged by making better future business decisions. Sources that are used for text analysis in financial industry vary from internal word documents, email to external sources like social media, websites or open data. The system described in this paper will utilize data from social media (Twitter) and tweets related to Italian banks, in Italian. This system is based on open source tools (R language) and topic extraction model was created to gather valuable information. This paper describes methods used for data ingestion, modelling, visualizations of results and insights.
金融行业大数据文本分析的可视化:以意大利银行为例
文本数据和分析可以得出新的见解,带来有价值的业务见解。可以通过制定更好的未来业务决策来进一步利用这些见解。用于金融行业文本分析的来源多种多样,从内部word文档、电子邮件到外部来源,如社交媒体、网站或开放数据。本文中描述的系统将利用来自社交媒体(Twitter)的数据和与意大利银行相关的推文,意大利语。本系统基于开源工具(R语言),建立主题抽取模型,收集有价值的信息。本文描述了用于数据摄取、建模、结果可视化和见解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信