Deteksi dan Penggolongan Kendaraan dengan Kalman Filter dan Model Gaussian di Jalan Tol

Raditya Faisal Waliulu
{"title":"Deteksi dan Penggolongan Kendaraan dengan Kalman Filter dan Model Gaussian di Jalan Tol","authors":"Raditya Faisal Waliulu","doi":"10.21456/VOL8ISS1PP1-8","DOIUrl":null,"url":null,"abstract":"Monitoring systems are widely implemented in various sectors aimed at improving the security and productivity aspects. The research aims to detect moving objects in the form of video file tipefile (* .avi) 640x480 resolution and image class according to pixel area. Moving objects are given in the Region of Interest path for easy detection. Detection on moving objects using methods of Kalman filter and gaussian mixture model. There are two types of distribution, the distribution of Background and Foreground. The form of the Foreground distribution is filtered using Bit Large Object segmentation to obtain the dimensions of the vehicle and morphological operations. The feature extraction results from the vehicle are used for vehicle classification based on pixel dimension. Segmentation results are used by Kalman Filter to calculate the tracking of moving object positions. If the Bit Large Object segmentation is not found moving object, then it is continued on the next frame. The final results of system detection are calculated using Positive True validation, True Negative, False Positive, and False Negative by looking for the sensitivity and specificity of each morning, day and night conditions","PeriodicalId":123899,"journal":{"name":"Jurnal Sistem Informasi Bisnis","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21456/VOL8ISS1PP1-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Monitoring systems are widely implemented in various sectors aimed at improving the security and productivity aspects. The research aims to detect moving objects in the form of video file tipefile (* .avi) 640x480 resolution and image class according to pixel area. Moving objects are given in the Region of Interest path for easy detection. Detection on moving objects using methods of Kalman filter and gaussian mixture model. There are two types of distribution, the distribution of Background and Foreground. The form of the Foreground distribution is filtered using Bit Large Object segmentation to obtain the dimensions of the vehicle and morphological operations. The feature extraction results from the vehicle are used for vehicle classification based on pixel dimension. Segmentation results are used by Kalman Filter to calculate the tracking of moving object positions. If the Bit Large Object segmentation is not found moving object, then it is continued on the next frame. The final results of system detection are calculated using Positive True validation, True Negative, False Positive, and False Negative by looking for the sensitivity and specificity of each morning, day and night conditions
车辆的检测和分类与卡尔曼滤清器和高速公路上的高斯模型
监测系统在各个部门广泛实施,旨在改善安全和生产力方面。本研究以视频文件tipefile (* .avi) 640x480分辨率和图像类别为形式,根据像素面积检测运动物体。在感兴趣区域路径中给出运动目标,便于检测。基于卡尔曼滤波和高斯混合模型的运动目标检测。有两种类型的分布,背景和前景的分布。使用Bit Large Object分割对前景分布形式进行滤波,得到车辆的尺寸并进行形态学操作。车辆特征提取结果用于基于像素尺寸的车辆分类。分割结果被卡尔曼滤波用于计算运动目标位置的跟踪。如果比特大对象分割没有发现移动对象,则在下一帧继续分割。通过寻找每个早晨、白天和夜晚条件的敏感性和特异性,使用正真验证、真阴性、假阳性和假阴性来计算系统检测的最终结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信