Undecidability of the Logic of Partial Quasiary Predicates

M. Rybakov, D. Shkatov
{"title":"Undecidability of the Logic of Partial Quasiary Predicates","authors":"M. Rybakov, D. Shkatov","doi":"10.1093/JIGPAL/JZAB018","DOIUrl":null,"url":null,"abstract":"\n We obtain an effective embedding of the classical predicate logic into the logic of partial quasiary predicates. The embedding has the property that an image of a non-theorem of the classical logic is refutable in a model of the logic of partial quasiary predicates that has the same cardinality as the classical countermodel of the non-theorem. Therefore, we also obtain an embedding of the classical predicate logic of finite models into the logic of partial quasiary predicates over finite structures. As a consequence, we prove that the logic of partial quasiary predicates is undecidable—more precisely, $\\varSigma ^0_1$-complete—over arbitrary structures and not recursively enumerable—more precisely, $\\varPi ^0_1$-complete—over finite structures.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZAB018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We obtain an effective embedding of the classical predicate logic into the logic of partial quasiary predicates. The embedding has the property that an image of a non-theorem of the classical logic is refutable in a model of the logic of partial quasiary predicates that has the same cardinality as the classical countermodel of the non-theorem. Therefore, we also obtain an embedding of the classical predicate logic of finite models into the logic of partial quasiary predicates over finite structures. As a consequence, we prove that the logic of partial quasiary predicates is undecidable—more precisely, $\varSigma ^0_1$-complete—over arbitrary structures and not recursively enumerable—more precisely, $\varPi ^0_1$-complete—over finite structures.
部分拟元谓词逻辑的不可判定性
我们将经典谓词逻辑有效地嵌入到部分拟谓词逻辑中。嵌入的性质是,经典逻辑的非定理的映像在部分拟谓词的逻辑模型中是可驳斥的,该模型与非定理的经典反模型具有相同的基数。因此,我们也得到了将有限模型的经典谓词逻辑嵌入到有限结构上的偏拟谓词逻辑中的方法。因此,我们证明了部分拟谓词的逻辑在任意结构上是不可判定的,更准确地说,$\varSigma ^0_1$-完全,而在有限结构上是不可递归枚举的,更准确地说,$\varPi ^0_1$-完全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信