Yongjin Zheng, Zexuan Zhu, Yutao Qi, Lei Wang, Xiaoliang Ma
{"title":"Multi-objective multifactorial evolutionary algorithm enhanced with the weighting helper-task","authors":"Yongjin Zheng, Zexuan Zhu, Yutao Qi, Lei Wang, Xiaoliang Ma","doi":"10.1109/IAI50351.2020.9262200","DOIUrl":null,"url":null,"abstract":"Recently, transfer learning has received more and more attention in the field of computational intelligence. The multi-task paradigm is a recent research hotspot. Among them, multi-objective multitasking optimization aims to optimize multiple multi-objective optimization problems simultaneously. The first evolutionary algorithm for multi-objective multitasking optimization is multi-objective multifactorial algorithm (MO-MFEA). However, MO-MFEA has slow convergence due to irrelevance or weakly relevance among tasks. To deal with this issue, we introduce an additional helper-task, i.e., a weight sum of component tasks, into MO-MFEA to improve the effectiveness of inter-task knowledge transfer. Experimental results on a set of benchmark problems have validated the effectiveness and efficiency of the proposed method as compared with MOMFEA and NSGA-II.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recently, transfer learning has received more and more attention in the field of computational intelligence. The multi-task paradigm is a recent research hotspot. Among them, multi-objective multitasking optimization aims to optimize multiple multi-objective optimization problems simultaneously. The first evolutionary algorithm for multi-objective multitasking optimization is multi-objective multifactorial algorithm (MO-MFEA). However, MO-MFEA has slow convergence due to irrelevance or weakly relevance among tasks. To deal with this issue, we introduce an additional helper-task, i.e., a weight sum of component tasks, into MO-MFEA to improve the effectiveness of inter-task knowledge transfer. Experimental results on a set of benchmark problems have validated the effectiveness and efficiency of the proposed method as compared with MOMFEA and NSGA-II.