A Performance Analysis of Large Scale Scientific Computing Applications from Log Archives

Liqiang Cao, X. Liu, Xiaowen Xu, Zhanjun Liu
{"title":"A Performance Analysis of Large Scale Scientific Computing Applications from Log Archives","authors":"Liqiang Cao, X. Liu, Xiaowen Xu, Zhanjun Liu","doi":"10.1109/IPDPSW.2019.00079","DOIUrl":null,"url":null,"abstract":"A log archive for scientific computing applications is a set of logs for model and time of jobs in HPCs. We have developed light weight and fast performance analysis tools on top of log archives. We classify the job logs based on the similarity of the input models to form a model-based tree like archive. With linear regression, we analyze the relations of the step time of the jobs with the parameters in the model. We found that although there is some disturbance, the performance of most of the jobs showed good regularity. In one of the applications, we found the step time of job changes proportionally to the geometric parameters of model. And the most significant physical parameter determines step time up to 1.7 times. In another application, we find that the performance of each step scales 1.59 times with the number of process scales from 384 to 768.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A log archive for scientific computing applications is a set of logs for model and time of jobs in HPCs. We have developed light weight and fast performance analysis tools on top of log archives. We classify the job logs based on the similarity of the input models to form a model-based tree like archive. With linear regression, we analyze the relations of the step time of the jobs with the parameters in the model. We found that although there is some disturbance, the performance of most of the jobs showed good regularity. In one of the applications, we found the step time of job changes proportionally to the geometric parameters of model. And the most significant physical parameter determines step time up to 1.7 times. In another application, we find that the performance of each step scales 1.59 times with the number of process scales from 384 to 768.
基于日志档案的大规模科学计算应用性能分析
科学计算应用程序的日志归档是hpc中作业的模型和时间的一组日志。我们在日志存档的基础上开发了轻量级和快速的性能分析工具。我们根据输入模型的相似性对作业日志进行分类,形成基于模型的树状归档。利用线性回归分析了作业步长与模型参数的关系。我们发现,虽然存在一定的干扰,但大多数工作的表现都表现出良好的规律性。在其中一个应用中,我们发现工作的步长变化与模型的几何参数成正比。而最重要的物理参数决定了高达1.7倍的步长。在另一个应用中,我们发现每个步骤的性能随着进程数量从384到768的变化而增加了1.59倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信