Introduction of negative charges in nitride for PV applications

H. Jin, K. Weber, B. Paudyal, C. Zhang
{"title":"Introduction of negative charges in nitride for PV applications","authors":"H. Jin, K. Weber, B. Paudyal, C. Zhang","doi":"10.1109/PVSC.2009.5411770","DOIUrl":null,"url":null,"abstract":"Negative charges were tunneled from Si surface into nitride film in the nitride/oxide/Si stacks by bias or corona charging. The tunneled charges appear to have linear relationship with the applied electrical field. A maximum negative charge density exists, when all K centers in nitride film are negative charged. At high bias condition, Si interface will take the risk of high energy electron damage. The damage is thermal unstable and can be annealed out at 300–400°C for very short time. Linear relationship is discovered with nitride thickness and threshold voltage, from which the electrical field strengths across nitride (3.4 MV/cm) and oxide (6 MV/cm) layers for tunneling were calculated. The tunneled charges are stable at room temperature, but will decay at elevated temperatures. At the cell operation conditions (around 90°C), 20% of the tunneled charges will disappear. At higher annealing conditions (350°C to 500°C), all tunneled charges vanish rapidly. Negative bias can also introduce negative charges around the top of the nitride layer through electrons injection. However, the negative charges are in very small amount and of little interest for PV applications.","PeriodicalId":411472,"journal":{"name":"2009 34th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 34th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2009.5411770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Negative charges were tunneled from Si surface into nitride film in the nitride/oxide/Si stacks by bias or corona charging. The tunneled charges appear to have linear relationship with the applied electrical field. A maximum negative charge density exists, when all K centers in nitride film are negative charged. At high bias condition, Si interface will take the risk of high energy electron damage. The damage is thermal unstable and can be annealed out at 300–400°C for very short time. Linear relationship is discovered with nitride thickness and threshold voltage, from which the electrical field strengths across nitride (3.4 MV/cm) and oxide (6 MV/cm) layers for tunneling were calculated. The tunneled charges are stable at room temperature, but will decay at elevated temperatures. At the cell operation conditions (around 90°C), 20% of the tunneled charges will disappear. At higher annealing conditions (350°C to 500°C), all tunneled charges vanish rapidly. Negative bias can also introduce negative charges around the top of the nitride layer through electrons injection. However, the negative charges are in very small amount and of little interest for PV applications.
光伏应用中氮化物负电荷的引入
负电荷通过偏压或电晕充电从Si表面隧穿到氮化膜中。隧穿电荷与外加电场呈线性关系。当氮化膜中所有K中心都带负电荷时,存在最大负电荷密度。在高偏置条件下,Si界面将面临高能电子损伤的风险。这种损伤是热不稳定的,可以在300-400°C下很短的时间内退火。发现了氮层厚度和阈值电压之间的线性关系,由此计算了氮层(3.4 MV/cm)和氧化物层(6 MV/cm)隧穿的电场强度。隧穿电荷在室温下是稳定的,但在高温下会衰减。在电池运行条件下(约90°C), 20%的隧穿电荷将消失。在较高的退火条件下(350°C至500°C),所有隧道电荷迅速消失。负偏压还可以通过电子注入在氮化层顶部周围引入负电荷。然而,负电荷的数量非常少,对于光伏应用来说兴趣不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信