An Empirical Study on Task-Oriented Dialogue Translation

Siyou Liu
{"title":"An Empirical Study on Task-Oriented Dialogue Translation","authors":"Siyou Liu","doi":"10.1109/ICASSP39728.2021.9413521","DOIUrl":null,"url":null,"abstract":"Translating conversational text, in particular task-oriented dialogues, is an important application task for machine translation technology. However, it has so far not been extensively explored due to its inherent characteristics including data limitation, discourse, informality and personality. In this paper, we systematically investigate advanced models on the task-oriented dialogue translation task, including sentence-level, document-level and non-autoregressive NMT models. Be-sides, we explore existing techniques such as data selection, back/forward translation, larger batch learning, finetuning and domain adaptation. To alleviate low-resource problem, we transfer general knowledge from four different pre-training models to the downstream task. Encouragingly, we find that the best model with mBART pre-training pushes the SOTA performance on WMT20 English-German and IWSLT DIALOG Chinese-English datasets up to 62.67 and 23.21 BLEU points, respectively.1","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Translating conversational text, in particular task-oriented dialogues, is an important application task for machine translation technology. However, it has so far not been extensively explored due to its inherent characteristics including data limitation, discourse, informality and personality. In this paper, we systematically investigate advanced models on the task-oriented dialogue translation task, including sentence-level, document-level and non-autoregressive NMT models. Be-sides, we explore existing techniques such as data selection, back/forward translation, larger batch learning, finetuning and domain adaptation. To alleviate low-resource problem, we transfer general knowledge from four different pre-training models to the downstream task. Encouragingly, we find that the best model with mBART pre-training pushes the SOTA performance on WMT20 English-German and IWSLT DIALOG Chinese-English datasets up to 62.67 and 23.21 BLEU points, respectively.1
任务导向对话翻译的实证研究
会话文本的翻译,特别是面向任务的对话,是机器翻译技术的重要应用任务。然而,由于其固有的数据局限性、话语性、非正式性和个性等特点,至今尚未得到广泛的探讨。本文系统地研究了面向任务的对话翻译任务的高级模型,包括句子级、文档级和非自回归NMT模型。此外,我们还探索了现有的技术,如数据选择、向后/向前翻译、大批量学习、微调和领域自适应。为了缓解低资源问题,我们将四种不同的预训练模型中的一般知识转移到下游任务中。令人鼓舞的是,我们发现经过mbat预训练的最佳模型在WMT20英语-德语和IWSLT DIALOG汉英数据集上的SOTA性能分别达到了62.67和23.21 BLEU点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信