Contactless Low Power Air-Writing Based on FMCW Radar Networks Using Spiking Neural Networks

Muhammad Arsalan, Tao Zheng, Avik Santra, V. Issakov
{"title":"Contactless Low Power Air-Writing Based on FMCW Radar Networks Using Spiking Neural Networks","authors":"Muhammad Arsalan, Tao Zheng, Avik Santra, V. Issakov","doi":"10.1109/ICMLA55696.2022.00155","DOIUrl":null,"url":null,"abstract":"Contactless detection of hand gestures with radar has gained a lot of attention as an intuitive form of human-computer interface. In this paper, we propose an air-writing system, writing of linguistic characters or words in free space by hand gesture movements using a network of milli-meter wave radars. Most of the works reported in the literature are based on deep learning approaches, which in some cases can involve prohibitively large computational/energy costs making them undesirable for edge IoT devices, where energy efficiency is the prime concern. We propose a highly energy-efficient air-writing system using spiking neural networks, where the trajectory of the character created by fine range estimates together with trilateration from a network of radars are recognized and classified by a spiking neural network (SNN). The proposed system achieves a similar level of classification accuracy (98.6%) compared to the state-of-the-art deep learning methods for 15 characters containing 10 alphabets (A to J) and 5 numerals (1 to 5). Additionally, the proposed SNN model is of 3.7 MB in size making it memory efficient in terms of storage. We demonstrated the proposed method in real-time using a network of 60-GHz frequency-modulated continuous wave radar chipset.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contactless detection of hand gestures with radar has gained a lot of attention as an intuitive form of human-computer interface. In this paper, we propose an air-writing system, writing of linguistic characters or words in free space by hand gesture movements using a network of milli-meter wave radars. Most of the works reported in the literature are based on deep learning approaches, which in some cases can involve prohibitively large computational/energy costs making them undesirable for edge IoT devices, where energy efficiency is the prime concern. We propose a highly energy-efficient air-writing system using spiking neural networks, where the trajectory of the character created by fine range estimates together with trilateration from a network of radars are recognized and classified by a spiking neural network (SNN). The proposed system achieves a similar level of classification accuracy (98.6%) compared to the state-of-the-art deep learning methods for 15 characters containing 10 alphabets (A to J) and 5 numerals (1 to 5). Additionally, the proposed SNN model is of 3.7 MB in size making it memory efficient in terms of storage. We demonstrated the proposed method in real-time using a network of 60-GHz frequency-modulated continuous wave radar chipset.
基于脉冲神经网络的FMCW雷达网络非接触式低功耗空写
利用雷达进行非接触式手势检测作为一种直观的人机界面形式受到了广泛关注。在本文中,我们提出了一种空气书写系统,使用毫米波雷达网络通过手势运动在自由空间中书写语言字符或单词。文献中报道的大多数工作都是基于深度学习方法的,在某些情况下,深度学习方法可能涉及过高的计算/能源成本,这使得它们不适合边缘物联网设备,其中能源效率是主要关注的问题。我们提出了一种使用尖峰神经网络的高能效空气书写系统,其中由雷达网络的精细距离估计和三边测量创建的字符轨迹由尖峰神经网络(SNN)识别和分类。与最先进的深度学习方法相比,所提出的系统在包含10个字母(a到J)和5个数字(1到5)的15个字符上实现了相似的分类准确率(98.6%)。此外,所提出的SNN模型的大小为3.7 MB,使其在存储方面具有内存效率。我们使用60 ghz调频连续波雷达芯片组网络实时演示了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信