Compact Hilbert Indices for Multi-Dimensional Data

Chris H. Hamilton, A. Rau-Chaplin
{"title":"Compact Hilbert Indices for Multi-Dimensional Data","authors":"Chris H. Hamilton, A. Rau-Chaplin","doi":"10.1109/CISIS.2007.16","DOIUrl":null,"url":null,"abstract":"Space-filling curves, particularly Hilbert curves, have proven to be a powerful paradigm for maintaining spatial groupings of multi-dimensional data in a variety of application areas including database systems,data structures and distributed information systems. One significant limitation in the standard definition of Hilbert curves is the requirement that the grid size (i.e. the cardinality) in each dimension be the same. In the real world, not all dimensions are of equal size and the work-around of padding all dimensions to the size of the largest dimension wastes memory and disk space, while increasing the time spent manipulating and communicating these \"inflated\" values. In this paper we define a new compact Hilbert index which, maintains all the advantages of the standard Hilbert curve and permits dimension cardinalities of varying sizes. This index can be used in any application that would have previously relied on Hilbert curves but, in the case of unequal side lengths, provides a more memory efficient representation. This is particularly important in distributed applications (parallel, P2P and grid), in which not only is memory space saved but communication volume reduced","PeriodicalId":328547,"journal":{"name":"First International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'07)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2007.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Space-filling curves, particularly Hilbert curves, have proven to be a powerful paradigm for maintaining spatial groupings of multi-dimensional data in a variety of application areas including database systems,data structures and distributed information systems. One significant limitation in the standard definition of Hilbert curves is the requirement that the grid size (i.e. the cardinality) in each dimension be the same. In the real world, not all dimensions are of equal size and the work-around of padding all dimensions to the size of the largest dimension wastes memory and disk space, while increasing the time spent manipulating and communicating these "inflated" values. In this paper we define a new compact Hilbert index which, maintains all the advantages of the standard Hilbert curve and permits dimension cardinalities of varying sizes. This index can be used in any application that would have previously relied on Hilbert curves but, in the case of unequal side lengths, provides a more memory efficient representation. This is particularly important in distributed applications (parallel, P2P and grid), in which not only is memory space saved but communication volume reduced
多维数据的紧致希尔伯特指数
空间填充曲线,特别是希尔伯特曲线,已被证明是维护多维数据空间分组的强大范例,适用于各种应用领域,包括数据库系统、数据结构和分布式信息系统。希尔伯特曲线标准定义中的一个重要限制是要求每个维度的网格大小(即基数)相同。在现实世界中,并非所有维度的大小都是相等的,将所有维度填充到最大维度的大小的解决方法会浪费内存和磁盘空间,同时增加了操作和传递这些“膨胀”值所花费的时间。本文定义了一种新的紧希尔伯特指数,它既保持了标准希尔伯特曲线的所有优点,又允许不同大小的维基数。这个索引可以用于任何以前依赖于希尔伯特曲线的应用程序,但是,在边长不等的情况下,提供了一个更有效的内存表示。这在分布式应用程序(并行、P2P和网格)中尤为重要,因为这样不仅节省了内存空间,还减少了通信量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信