Comparison of tree canopy extraction using Object Based Image Analysis and Deep Learning Technique in UAV images

A. Chouhan, Shivaraj S, D. Chutia, P. Raju
{"title":"Comparison of tree canopy extraction using Object Based Image Analysis and Deep Learning Technique in UAV images","authors":"A. Chouhan, Shivaraj S, D. Chutia, P. Raju","doi":"10.1109/ICICRS46726.2019.9555767","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle captured images is a new method of acquiring very high resolution data. Present days there is a huge need of precise land cover data in various fields, example land use, and natural resource conservation. For extraction of information from imagery various algorithms mostly object based has been used. Using Object Base Image Analysis methods usually achieve good results for segmentation of tree canopy in high spatial resolution aerial images. In this paper we are providing insights of segmentation algorithms used for extraction of tree canopy from very high resolution imagery. We provide detailed comparison of output generated from earlier object based tree canopy extraction algorithm with upcoming deep learning based new techniques.","PeriodicalId":427659,"journal":{"name":"2019 International Conference on Intelligent Computing and Remote Sensing (ICICRS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Computing and Remote Sensing (ICICRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICRS46726.2019.9555767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicle captured images is a new method of acquiring very high resolution data. Present days there is a huge need of precise land cover data in various fields, example land use, and natural resource conservation. For extraction of information from imagery various algorithms mostly object based has been used. Using Object Base Image Analysis methods usually achieve good results for segmentation of tree canopy in high spatial resolution aerial images. In this paper we are providing insights of segmentation algorithms used for extraction of tree canopy from very high resolution imagery. We provide detailed comparison of output generated from earlier object based tree canopy extraction algorithm with upcoming deep learning based new techniques.
基于目标的图像分析与深度学习技术在无人机图像中树冠提取的比较
无人机捕获图像是一种获取高分辨率数据的新方法。目前,在各个领域,例如土地利用和自然资源保护,都需要精确的土地覆盖数据。为了从图像中提取信息,已经使用了各种算法,主要是基于对象的算法。利用物基图像分析方法对高空间分辨率航拍图像进行树冠分割,通常能取得较好的效果。在本文中,我们提供了用于从非常高分辨率图像中提取树冠的分割算法的见解。我们提供了早期基于对象的树冠提取算法与即将到来的基于深度学习的新技术产生的输出的详细比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信